Abstract:While text-to-image diffusion models have been shown to achieve state-of-the-art results in image synthesis, they have yet to prove their effectiveness in downstream applications. Previous work has proposed to generate data for image classifier training given limited real data access. However, these methods struggle to generate in-distribution images or depict fine-grained features, thereby hindering the generalization of classification models trained on synthetic datasets. We propose DataDream, a framework for synthesizing classification datasets that more faithfully represents the real data distribution when guided by few-shot examples of the target classes. DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model. We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets. We demonstrate the efficacy of DataDream through extensive experiments, surpassing state-of-the-art classification accuracy with few-shot data across 7 out of 10 datasets, while being competitive on the other 3. Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance. The code is available at https://github.com/ExplainableML/DataDream.
Abstract:Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions. Crucially, the CBM design inherently allows for human interventions, in which expert users are given the ability to modify potentially misaligned concept choices to influence the decision behavior of the model in an interpretable fashion. However, existing approaches often require numerous human interventions per image to achieve strong performances, posing practical challenges in scenarios where obtaining human feedback is expensive. In this paper, we find that this is noticeably driven by an independent treatment of concepts during intervention, wherein a change of one concept does not influence the use of other ones in the model's final decision. To address this issue, we introduce a trainable concept intervention realignment module, which leverages concept relations to realign concept assignments post-intervention. Across standard, real-world benchmarks, we find that concept realignment can significantly improve intervention efficacy; significantly reducing the number of interventions needed to reach a target classification performance or concept prediction accuracy. In addition, it easily integrates into existing concept-based architectures without requiring changes to the models themselves. This reduced cost of human-model collaboration is crucial to enhancing the feasibility of CBMs in resource-constrained environments.
Abstract:The visual classification performance of vision-language models such as CLIP can benefit from additional semantic knowledge, e.g. via large language models (LLMs) such as GPT-3. Further extending classnames with LLM-generated class descriptors, e.g. ``waffle, \textit{which has a round shape}'', or averaging retrieval scores over multiple such descriptors, has been shown to improve generalization performance. In this work, we study this behavior in detail and propose \texttt{Waffle}CLIP, a framework for zero-shot visual classification which achieves similar performance gains on a large number of visual classification tasks by simply replacing LLM-generated descriptors with random character and word descriptors \textbf{without} querying external models. We extend these results with an extensive experimental study on the impact and shortcomings of additional semantics introduced via LLM-generated descriptors, and showcase how semantic context is better leveraged by automatically querying LLMs for high-level concepts, while jointly resolving potential class name ambiguities. Link to the codebase: https://github.com/ExplainableML/WaffleCLIP.
Abstract:Cross-modal retrieval methods are the preferred tool to search databases for the text that best matches a query image and vice versa. However, image-text retrieval models commonly learn to memorize spurious correlations in the training data, such as frequent object co-occurrence, instead of looking at the actual underlying reasons for the prediction in the image. For image-text retrieval, this manifests in retrieved sentences that mention objects that are not present in the query image. In this work, we introduce ODmAP@k, an object decorrelation metric that measures a model's robustness to spurious correlations in the training data. We use automatic image and text manipulations to control the presence of such object correlations in designated test data. Additionally, our data synthesis technique is used to tackle model biases due to spurious correlations of semantically unrelated objects in the training data. We apply our proposed pipeline, which involves the finetuning of image-text retrieval frameworks on carefully designed synthetic data, to three state-of-the-art models for image-text retrieval. This results in significant improvements for all three models, both in terms of the standard retrieval performance and in terms of our object decorrelation metric. The code is available at https://github.com/ExplainableML/Spurious_CM_Retrieval.
Abstract:Due to the expensive costs of collecting labels in multi-label classification datasets, partially annotated multi-label classification has become an emerging field in computer vision. One baseline approach to this task is to assume unobserved labels as negative labels, but this assumption induces label noise as a form of false negative. To understand the negative impact caused by false negative labels, we study how these labels affect the model's explanation. We observe that the explanation of two models, trained with full and partial labels each, highlights similar regions but with different scaling, where the latter tends to have lower attribution scores. Based on these findings, we propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels. Even with the conceptually simple approach, the multi-label classification performance improves by a large margin in three different datasets on a single positive label setting and one on a large-scale partial label setting. Code is available at https://github.com/youngwk/BridgeGapExplanationPAMC.
Abstract:Bayesian deep learning approaches that allow uncertainty estimation for regression problems often converge slowly and yield poorly calibrated uncertainty estimates that can not be effectively used for quantification. Recently proposed post hoc calibration techniques are seldom applicable to regression problems and often add overhead to an already slow model training phase. This work presents a fast calibrated uncertainty estimation method for regression tasks, called posterior annealing, that consistently improves the convergence of deep regression models and yields calibrated uncertainty without any post hoc calibration phase. Unlike previous methods for calibrated uncertainty in regression that focus only on low-dimensional regression problems, our method works well on a wide spectrum of regression problems. Our empirical analysis shows that our approach is generalizable to various network architectures including, multilayer perceptrons, 1D/2D convolutional networks, and graph neural networks, on five vastly diverse tasks, i.e., chaotic particle trajectory denoising, physical property prediction of molecules using 3D atomistic representation, natural image super-resolution, and medical image translation using MRI images.
Abstract:Weakly supervised multi-label classification (WSML) task, which is to learn a multi-label classification using partially observed labels per image, is becoming increasingly important due to its huge annotation cost. In this work, we first regard unobserved labels as negative labels, casting the WSML task into noisy multi-label classification. From this point of view, we empirically observe that memorization effect, which was first discovered in a noisy multi-class setting, also occurs in a multi-label setting. That is, the model first learns the representation of clean labels, and then starts memorizing noisy labels. Based on this finding, we propose novel methods for WSML which reject or correct the large loss samples to prevent model from memorizing the noisy label. Without heavy and complex components, our proposed methods outperform previous state-of-the-art WSML methods on several partial label settings including Pascal VOC 2012, MS COCO, NUSWIDE, CUB, and OpenImages V3 datasets. Various analysis also show that our methodology actually works well, validating that treating large loss properly matters in a weakly supervised multi-label classification. Our code is available at https://github.com/snucml/LargeLossMatters.
Abstract:The class activation mapping, or CAM, has been the cornerstone of feature attribution methods for multiple vision tasks. Its simplicity and effectiveness have led to wide applications in the explanation of visual predictions and weakly-supervised localization tasks. However, CAM has its own shortcomings. The computation of attribution maps relies on ad-hoc calibration steps that are not part of the training computational graph, making it difficult for us to understand the real meaning of the attribution values. In this paper, we improve CAM by explicitly incorporating a latent variable encoding the location of the cue for recognition in the formulation, thereby subsuming the attribution map into the training computational graph. The resulting model, class activation latent mapping, or CALM, is trained with the expectation-maximization algorithm. Our experiments show that CALM identifies discriminative attributes for image classifiers more accurately than CAM and other visual attribution baselines. CALM also shows performance improvements over prior arts on the weakly-supervised object localization benchmarks. Our code is available at https://github.com/naver-ai/calm.
Abstract:In recent years, deep neural networks (DNN) have become a highly active area of research, and shown remarkable achievements on a variety of computer vision tasks. DNNs, however, are known to often make overconfident yet incorrect predictions on out-of-distribution samples, which can be a major obstacle to real-world deployments because the training dataset is always limited compared to diverse real-world samples. Thus, it is fundamental to provide guarantees of robustness to the distribution shift between training and test time when we construct DNN models in practice. Moreover, in many cases, the deep learning models are deployed as black boxes and the performance has been already optimized for a training dataset, thus changing the black box itself can lead to performance degradation. We here study the robustness to the geometric transformations in a specific condition where the black-box image classifier is given. We propose an additional learner, \emph{REinforcement Spatial Transform learner (REST)}, that transforms the warped input data into samples regarded as in-distribution by the black-box models. Our work aims to improve the robustness by adding a REST module in front of any black boxes and training only the REST module without retraining the original black box model in an end-to-end manner, i.e. we try to convert the real-world data into training distribution which the performance of the black-box model is best suited for. We use a confidence score that is obtained from the black-box model to determine whether the transformed input is drawn from in-distribution. We empirically show that our method has an advantage in generalization to geometric transformations and sample efficiency.
Abstract:Deep neural networks(NNs) have achieved impressive performance, often exceed human performance on many computer vision tasks. However, one of the most challenging issues that still remains is that NNs are overconfident in their predictions, which can be very harmful when this arises in safety critical applications. In this paper, we show that predictive uncertainty can be efficiently estimated when we incorporate the concept of gradients uncertainty into posterior sampling. The proposed method is tested on two different datasets, MNIST for in-distribution confusing examples and notMNIST for out-of-distribution data. We show that our method is able to efficiently represent predictive uncertainty on both datasets.