Abstract:Long-tailed image recognition is a computer vision problem considering a real-world class distribution rather than an artificial uniform. Existing methods typically detour the problem by i) adjusting a loss function, ii) decoupling classifier learning, or iii) proposing a new multi-head architecture called experts. In this paper, we tackle the problem from a different perspective to augment a training dataset to enhance the sample diversity of minority classes. Specifically, our method, namely Confusion-Pairing Mixup (CP-Mix), estimates the confusion distribution of the model and handles the data deficiency problem by augmenting samples from confusion pairs in real-time. In this way, CP-Mix trains the model to mitigate its weakness and distinguish a pair of classes it frequently misclassifies. In addition, CP-Mix utilizes a novel mixup formulation to handle the bias in decision boundaries that originated from the imbalanced dataset. Extensive experiments demonstrate that CP-Mix outperforms existing methods for long-tailed image recognition and successfully relieves the confusion of the classifier.
Abstract:Models trained with empirical risk minimization (ERM) are prone to be biased towards spurious correlations between target labels and bias attributes, which leads to poor performance on data groups lacking spurious correlations. It is particularly challenging to address this problem when access to bias labels is not permitted. To mitigate the effect of spurious correlations without bias labels, we first introduce a novel training objective designed to robustly enhance model performance across all data samples, irrespective of the presence of spurious correlations. From this objective, we then derive a debiasing method, Disagreement Probability based Resampling for debiasing (DPR), which does not require bias labels. DPR leverages the disagreement between the target label and the prediction of a biased model to identify bias-conflicting samples-those without spurious correlations-and upsamples them according to the disagreement probability. Empirical evaluations on multiple benchmarks demonstrate that DPR achieves state-of-the-art performance over existing baselines that do not use bias labels. Furthermore, we provide a theoretical analysis that details how DPR reduces dependency on spurious correlations.
Abstract:Distributional reinforcement learning improves performance by effectively capturing environmental stochasticity, but a comprehensive theoretical understanding of its effectiveness remains elusive. In this paper, we present a regret analysis for distributional reinforcement learning with general value function approximation in a finite episodic Markov decision process setting. We first introduce a key notion of Bellman unbiasedness for a tractable and exactly learnable update via statistical functional dynamic programming. Our theoretical results show that approximating the infinite-dimensional return distribution with a finite number of moment functionals is the only method to learn the statistical information unbiasedly, including nonlinear statistical functionals. Second, we propose a provably efficient algorithm, $\texttt{SF-LSVI}$, achieving a regret bound of $\tilde{O}(d_E H^{\frac{3}{2}}\sqrt{K})$ where $H$ is the horizon, $K$ is the number of episodes, and $d_E$ is the eluder dimension of a function class.
Abstract:In urban environments for delivery robots, particularly in areas such as campuses and towns, many custom features defy standard road semantic categorizations. Addressing this challenge, our paper introduces a method leveraging Salient Object Detection (SOD) to extract these unique features, employing them as pivotal factors for enhanced robot loop closure and localization. Traditional geometric feature-based localization is hampered by fluctuating illumination and appearance changes. Our preference for SOD over semantic segmentation sidesteps the intricacies of classifying a myriad of non-standardized urban features. To achieve consistent ground features, the Motion Compensate IPM (MC-IPM) technique is implemented, capitalizing on motion for distortion compensation and subsequently selecting the most pertinent salient ground features through moment computations. For thorough evaluation, we validated the saliency detection and localization performances to the real urban scenarios. Project page: https://sites.google.com/view/salient-ground-feature/home.
Abstract:This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a learning-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. Furthermore, for sensitive tasks like inspecting cracks, photorealistic mapping is very important. However, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.
Abstract:One of the objectives of continual learning is to prevent catastrophic forgetting in learning multiple tasks sequentially, and the existing solutions have been driven by the conceptualization of the plasticity-stability dilemma. However, the convergence of continual learning for each sequential task is less studied so far. In this paper, we provide a convergence analysis of memory-based continual learning with stochastic gradient descent and empirical evidence that training current tasks causes the cumulative degradation of previous tasks. We propose an adaptive method for nonconvex continual learning (NCCL), which adjusts step sizes of both previous and current tasks with the gradients. The proposed method can achieve the same convergence rate as the SGD method when the catastrophic forgetting term which we define in the paper is suppressed at each iteration. Further, we demonstrate that the proposed algorithm improves the performance of continual learning over existing methods for several image classification tasks.
Abstract:Alleviating overestimation bias is a critical challenge for deep reinforcement learning to achieve successful performance on more complex tasks or offline datasets containing out-of-distribution data. In order to overcome overestimation bias, ensemble methods for Q-learning have been investigated to exploit the diversity of multiple Q-functions. Since network initialization has been the predominant approach to promote diversity in Q-functions, heuristically designed diversity injection methods have been studied in the literature. However, previous studies have not attempted to approach guaranteed independence over an ensemble from a theoretical perspective. By introducing a novel regularization loss for Q-ensemble independence based on random matrix theory, we propose spiked Wishart Q-ensemble independence regularization (SPQR) for reinforcement learning. Specifically, we modify the intractable hypothesis testing criterion for the Q-ensemble independence into a tractable KL divergence between the spectral distribution of the Q-ensemble and the target Wigner's semicircle distribution. We implement SPQR in several online and offline ensemble Q-learning algorithms. In the experiments, SPQR outperforms the baseline algorithms in both online and offline RL benchmarks.
Abstract:Macro placement is a critical phase in chip design, which becomes more intricate when involving general rectilinear macros and layout areas. Furthermore, macro placement that incorporates human-like constraints, such as design hierarchy and peripheral bias, has the potential to significantly reduce the amount of additional manual labor required from designers. This study proposes a methodology that leverages an approach suggested by Google's Circuit Training (G-CT) to provide a learning-based macro placer that not only supports placing rectilinear cases, but also adheres to crucial human-like design principles. Our experimental results demonstrate the effectiveness of our framework in achieving power-performance-area (PPA) metrics and in obtaining placements of high quality, comparable to those produced with human intervention. Additionally, our methodology shows potential as a generalized model to address diverse macro shapes and layout areas.
Abstract:Distributional reinforcement learning algorithms have attempted to utilize estimated uncertainty for exploration, such as optimism in the face of uncertainty. However, using the estimated variance for optimistic exploration may cause biased data collection and hinder convergence or performance. In this paper, we present a novel distributional reinforcement learning algorithm that selects actions by randomizing risk criterion to avoid one-sided tendency on risk. We provide a perturbed distributional Bellman optimality operator by distorting the risk measure and prove the convergence and optimality of the proposed method with the weaker contraction property. Our theoretical results support that the proposed method does not fall into biased exploration and is guaranteed to converge to an optimal return. Finally, we empirically show that our method outperforms other existing distribution-based algorithms in various environments including Atari 55 games.
Abstract:Fine-tuning pre-trained neural network models has become a widely adopted approach across various domains. However, it can lead to the distortion of pre-trained feature extractors that already possess strong generalization capabilities. Mitigating feature distortion during adaptation to new target domains is crucial. Recent studies have shown promising results in handling feature distortion by aligning the head layer on in-distribution datasets before performing fine-tuning. Nonetheless, a significant limitation arises from the treatment of batch normalization layers during fine-tuning, leading to suboptimal performance. In this paper, we propose Domain-Aware Fine-Tuning (DAFT), a novel approach that incorporates batch normalization conversion and the integration of linear probing and fine-tuning. Our batch normalization conversion method effectively mitigates feature distortion by reducing modifications to the neural network during fine-tuning. Additionally, we introduce the integration of linear probing and fine-tuning to optimize the head layer with gradual adaptation of the feature extractor. By leveraging batch normalization layers and integrating linear probing and fine-tuning, our DAFT significantly mitigates feature distortion and achieves improved model performance on both in-distribution and out-of-distribution datasets. Extensive experiments demonstrate that our method outperforms other baseline methods, demonstrating its effectiveness in not only improving performance but also mitigating feature distortion.