Abstract:Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
Abstract:Behavior cloning methods for robot learning suffer from poor generalization due to limited data support beyond expert demonstrations. Recent approaches leveraging video prediction models have shown promising results by learning rich spatiotemporal representations from large-scale datasets. However, these models learn action-agnostic dynamics that cannot distinguish between different control inputs, limiting their utility for precise manipulation tasks and requiring large pretraining datasets. We propose a Dynamics-Aligned Flow Matching Policy (DAP) that integrates dynamics prediction into policy learning. Our method introduces a novel architecture where policy and dynamics models provide mutual corrective feedback during action generation, enabling self-correction and improved generalization. Empirical validation demonstrates generalization performance superior to baseline methods on real-world robotic manipulation tasks, showing particular robustness in OOD scenarios including visual distractions and lighting variations.
Abstract:Alleviating overestimation bias is a critical challenge for deep reinforcement learning to achieve successful performance on more complex tasks or offline datasets containing out-of-distribution data. In order to overcome overestimation bias, ensemble methods for Q-learning have been investigated to exploit the diversity of multiple Q-functions. Since network initialization has been the predominant approach to promote diversity in Q-functions, heuristically designed diversity injection methods have been studied in the literature. However, previous studies have not attempted to approach guaranteed independence over an ensemble from a theoretical perspective. By introducing a novel regularization loss for Q-ensemble independence based on random matrix theory, we propose spiked Wishart Q-ensemble independence regularization (SPQR) for reinforcement learning. Specifically, we modify the intractable hypothesis testing criterion for the Q-ensemble independence into a tractable KL divergence between the spectral distribution of the Q-ensemble and the target Wigner's semicircle distribution. We implement SPQR in several online and offline ensemble Q-learning algorithms. In the experiments, SPQR outperforms the baseline algorithms in both online and offline RL benchmarks.