Abstract:In robot task planning, large language models (LLMs) have shown significant promise in generating complex and long-horizon action sequences. However, it is observed that LLMs often produce responses that sound plausible but are not accurate. To address these problems, existing methods typically employ predefined error sets or external knowledge sources, requiring human efforts and computation resources. Recently, self-correction approaches have emerged, where LLM generates and refines plans, identifying errors by itself. Despite their effectiveness, they are more prone to failures in correction due to insufficient reasoning. In this paper, we introduce InversePrompt, a novel self-corrective task planning approach that leverages inverse prompting to enhance interpretability. Our method incorporates reasoning steps to provide clear, interpretable feedback. It generates inverse actions corresponding to the initially generated actions and verifies whether these inverse actions can restore the system to its original state, explicitly validating the logical coherence of the generated plans. The results on benchmark datasets show an average 16.3% higher success rate over existing LLM-based task planning methods. Our approach offers clearer justifications for feedback in real-world environments, resulting in more successful task completion than existing self-correction approaches across various scenarios.
Abstract:This paper presents a novel learning-based approach to dynamic robot-to-human handover, addressing the challenges of delivering objects to a moving receiver. We hypothesize that dynamic handover, where the robot adjusts to the receiver's movements, results in more efficient and comfortable interaction compared to static handover, where the receiver is assumed to be stationary. To validate this, we developed a nonparametric method for generating continuous handover motion, conditioned on the receiver's movements, and trained the model using a dataset of 1,000 human-to-human handover demonstrations. We integrated preference learning for improved handover effectiveness and applied impedance control to ensure user safety and adaptiveness. The approach was evaluated in both simulation and real-world settings, with user studies demonstrating that dynamic handover significantly reduces handover time and improves user comfort compared to static methods. Videos and demonstrations of our approach are available at https://zerotohero7886.github.io/dyn-r2h-handover .
Abstract:Distributional reinforcement learning improves performance by effectively capturing environmental stochasticity, but a comprehensive theoretical understanding of its effectiveness remains elusive. In this paper, we present a regret analysis for distributional reinforcement learning with general value function approximation in a finite episodic Markov decision process setting. We first introduce a key notion of Bellman unbiasedness for a tractable and exactly learnable update via statistical functional dynamic programming. Our theoretical results show that approximating the infinite-dimensional return distribution with a finite number of moment functionals is the only method to learn the statistical information unbiasedly, including nonlinear statistical functionals. Second, we propose a provably efficient algorithm, $\texttt{SF-LSVI}$, achieving a regret bound of $\tilde{O}(d_E H^{\frac{3}{2}}\sqrt{K})$ where $H$ is the horizon, $K$ is the number of episodes, and $d_E$ is the eluder dimension of a function class.
Abstract:Interactions with billion-scale large language models typically yield long-form responses due to their extensive parametric capacities, along with retrieval-augmented features. While detailed responses provide insightful viewpoint of a specific subject, they frequently generate redundant and less engaging content that does not meet user interests. In this work, we focus on the role of query outlining (i.e., selected sequence of queries) in scenarios that users request a specific range of information, namely coverage-conditioned ($C^2$) scenarios. For simulating $C^2$ scenarios, we construct QTree, 10K sets of information-seeking queries decomposed with various perspectives on certain topics. By utilizing QTree, we train QPlanner, a 7B language model generating customized query outlines that follow coverage-conditioned queries. We analyze the effectiveness of generated outlines through automatic and human evaluation, targeting on retrieval-augmented generation (RAG). Moreover, the experimental results demonstrate that QPlanner with alignment training can further provide outlines satisfying diverse user interests. Our resources are available at https://github.com/youngerous/qtree.
Abstract:As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
Abstract:The field of risk-constrained reinforcement learning (RCRL) has been developed to effectively reduce the likelihood of worst-case scenarios by explicitly handling risk-measure-based constraints. However, the nonlinearity of risk measures makes it challenging to achieve convergence and optimality. To overcome the difficulties posed by the nonlinearity, we propose a spectral risk measure-constrained RL algorithm, spectral-risk-constrained policy optimization (SRCPO), a bilevel optimization approach that utilizes the duality of spectral risk measures. In the bilevel optimization structure, the outer problem involves optimizing dual variables derived from the risk measures, while the inner problem involves finding an optimal policy given these dual variables. The proposed method, to the best of our knowledge, is the first to guarantee convergence to an optimum in the tabular setting. Furthermore, the proposed method has been evaluated on continuous control tasks and showed the best performance among other RCRL algorithms satisfying the constraints.
Abstract:Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
Abstract:Despite the promise of RLHF in aligning LLMs with human preferences, it often leads to superficial alignment, prioritizing stylistic changes over improving downstream performance of LLMs. Underspecified preferences could obscure directions to align the models. Lacking exploration restricts identification of desirable outputs to improve the models. To overcome these challenges, we propose a novel framework: Reinforcement Learning from Reflective Feedback (RLRF), which leverages fine-grained feedback based on detailed criteria to improve the core capabilities of LLMs. RLRF employs a self-reflection mechanism to systematically explore and refine LLM responses, then fine-tuning the models via a RL algorithm along with promising responses. Our experiments across Just-Eval, Factuality, and Mathematical Reasoning demonstrate the efficacy and transformative potential of RLRF beyond superficial surface-level adjustment.
Abstract:Distributional reinforcement learning algorithms have attempted to utilize estimated uncertainty for exploration, such as optimism in the face of uncertainty. However, using the estimated variance for optimistic exploration may cause biased data collection and hinder convergence or performance. In this paper, we present a novel distributional reinforcement learning algorithm that selects actions by randomizing risk criterion to avoid one-sided tendency on risk. We provide a perturbed distributional Bellman optimality operator by distorting the risk measure and prove the convergence and optimality of the proposed method with the weaker contraction property. Our theoretical results support that the proposed method does not fall into biased exploration and is guaranteed to converge to an optimal return. Finally, we empirically show that our method outperforms other existing distribution-based algorithms in various environments including Atari 55 games.
Abstract:Information-seeking questions in long-form question answering (LFQA) often prove misleading due to ambiguity or false presupposition in the question. While many existing approaches handle misleading questions, they are tailored to limited questions, which are insufficient in a real-world setting with unpredictable input characteristics. In this work, we propose PreWoMe, a unified approach capable of handling any type of information-seeking question. The key idea of PreWoMe involves extracting presuppositions in the question and exploiting them as working memory to generate feedback and action about the question. Our experiment shows that PreWoMe is effective not only in tackling misleading questions but also in handling normal ones, thereby demonstrating the effectiveness of leveraging presuppositions, feedback, and action for real-world QA settings.