Abstract:Real-world decision-making often requires integrating and reasoning over information from multiple modalities. While recent multimodal large language models (MLLMs) have shown promise in such tasks, their ability to perform multi-hop reasoning across diverse sources remains insufficiently evaluated. Existing benchmarks, such as MMQA, face challenges due to (1) data contamination and (2) a lack of complex queries that necessitate operations across more than two modalities, hindering accurate performance assessment. To address this, we present Financial Cross-Modal Multi-Hop Reasoning (FCMR), a benchmark created to analyze the reasoning capabilities of MLLMs by urging them to combine information from textual reports, tables, and charts within the financial domain. FCMR is categorized into three difficulty levels-Easy, Medium, and Hard-facilitating a step-by-step evaluation. In particular, problems at the Hard level require precise cross-modal three-hop reasoning and are designed to prevent the disregard of any modality. Experiments on this new benchmark reveal that even state-of-the-art MLLMs struggle, with the best-performing model (Claude 3.5 Sonnet) achieving only 30.4% accuracy on the most challenging tier. We also conduct analysis to provide insights into the inner workings of the models, including the discovery of a critical bottleneck in the information retrieval phase.
Abstract:Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust.
Abstract:When using large language models (LLMs) in knowledge-intensive tasks, such as open-domain question answering, external context can bridge a gap between external knowledge and LLM's parametric knowledge. Recent research has been developed to amplify contextual knowledge over the parametric knowledge of LLM with contrastive decoding approaches. While these approaches could yield truthful responses when relevant context is provided, they are prone to vulnerabilities when faced with noisy contexts. We extend the scope of previous studies to encompass noisy contexts and propose adaptive contrastive decoding (ACD) to leverage contextual influence effectively. ACD demonstrates improvements in open-domain question answering tasks compared to baselines, especially in robustness by remaining undistracted by noisy contexts in retrieval-augmented generation.
Abstract:Fine-tuning pre-trained language models (PLMs) has recently shown a potential to improve knowledge graph completion (KGC). However, most PLM-based methods encode only textual information, neglecting various topological structures of knowledge graphs (KGs). In this paper, we empirically validate the significant relations between the structural properties of KGs and the performance of the PLM-based methods. To leverage the structural knowledge, we propose a Subgraph-Aware Training framework for KGC (SATKGC) that combines (i) subgraph-aware mini-batching to encourage hard negative sampling, and (ii) a new contrastive learning method to focus more on harder entities and harder negative triples in terms of the structural properties. To the best of our knowledge, this is the first study to comprehensively incorporate the structural inductive bias of the subgraphs into fine-tuning PLMs. Extensive experiments on four KGC benchmarks demonstrate the superiority of SATKGC. Our code is available.
Abstract:Modular programming, which aims to construct the final program by integrating smaller, independent building blocks, has been regarded as a desirable practice in software development. However, with the rise of recent code generation agents built upon large language models (LLMs), a question emerges: is this traditional practice equally effective for these new tools? In this work, we assess the impact of modularity in code generation by introducing a novel metric for its quantitative measurement. Surprisingly, unlike conventional wisdom on the topic, we find that modularity is not a core factor for improving the performance of code generation models. We also explore potential explanations for why LLMs do not exhibit a preference for modular code compared to non-modular code.
Abstract:AI Generated Text (AIGT) detectors are developed with texts from humans and LLMs of common tasks. Despite the diversity of plausible prompt choices, these datasets are generally constructed with a limited number of prompts. The lack of prompt variation can introduce prompt-specific shortcut features that exist in data collected with the chosen prompt, but do not generalize to others. In this paper, we analyze the impact of such shortcuts in AIGT detection. We propose Feedback-based Adversarial Instruction List Optimization (FAILOpt), an attack that searches for instructions deceptive to AIGT detectors exploiting prompt-specific shortcuts. FAILOpt effectively drops the detection performance of the target detector, comparable to other attacks based on adversarial in-context examples. We also utilize our method to enhance the robustness of the detector by mitigating the shortcuts. Based on the findings, we further train the classifier with the dataset augmented by FAILOpt prompt. The augmented classifier exhibits improvements across generation models, tasks, and attacks. Our code will be available at https://github.com/zxcvvxcz/FAILOpt.
Abstract:In spoken languages, utterances are often shaped to be incomplete or vague for efficiency. This can lead to varying interpretations of the same input, based on different assumptions about the context. To ensure reliable user-model interactions in such scenarios, it is crucial for models to adeptly handle the inherent ambiguity in user queries. However, conversational agents built upon even the most recent large language models (LLMs) face challenges in processing ambiguous inputs, primarily due to the following two hurdles: (1) LLMs are not directly trained to handle inputs that are too ambiguous to be properly managed; (2) the degree of ambiguity in an input can vary according to the intrinsic knowledge of the LLMs, which is difficult to investigate. To address these issues, this paper proposes a method to align LLMs to explicitly handle ambiguous inputs. Specifically, we introduce a proxy task that guides LLMs to utilize their intrinsic knowledge to self-disambiguate a given input. We quantify the information gain from the disambiguation procedure as a measure of the extent to which the models perceive their inputs as ambiguous. This measure serves as a cue for selecting samples deemed ambiguous from the models' perspectives, which are then utilized for alignment. Experimental results from several question-answering datasets demonstrate that the LLMs fine-tuned with our approach are capable of handling ambiguous inputs while still performing competitively on clear questions within the task.
Abstract:Task-oriented dialogue (TOD) systems are commonly designed with the presumption that each utterance represents a single intent. However, this assumption may not accurately reflect real-world situations, where users frequently express multiple intents within a single utterance. While there is an emerging interest in multi-intent detection (MID), existing in-domain datasets such as MixATIS and MixSNIPS have limitations in their formulation. To address these issues, we present BlendX, a suite of refined datasets featuring more diverse patterns than their predecessors, elevating both its complexity and diversity. For dataset construction, we utilize both rule-based heuristics as well as a generative tool -- OpenAI's ChatGPT -- which is augmented with a similarity-driven strategy for utterance selection. To ensure the quality of the proposed datasets, we also introduce three novel metrics that assess the statistical properties of an utterance related to word count, conjunction use, and pronoun usage. Extensive experiments on BlendX reveal that state-of-the-art MID models struggle with the challenges posed by the new datasets, highlighting the need to reexamine the current state of the MID field. The dataset is available at https://github.com/HYU-NLP/BlendX.
Abstract:While the introduction of contrastive learning frameworks in sentence representation learning has significantly contributed to advancements in the field, it still remains unclear whether state-of-the-art sentence embeddings can capture the fine-grained semantics of sentences, particularly when conditioned on specific perspectives. In this paper, we introduce Hyper-CL, an efficient methodology that integrates hypernetworks with contrastive learning to compute conditioned sentence representations. In our proposed approach, the hypernetwork is responsible for transforming pre-computed condition embeddings into corresponding projection layers. This enables the same sentence embeddings to be projected differently according to various conditions. Evaluation on two representative conditioning benchmarks, namely conditional semantic text similarity and knowledge graph completion, demonstrates that Hyper-CL is effective in flexibly conditioning sentence representations, showcasing its computational efficiency at the same time. We also provide a comprehensive analysis of the inner workings of our approach, leading to a better interpretation of its mechanisms.
Abstract:The successful adaptation of multilingual language models (LMs) to a specific language-task pair critically depends on the availability of data tailored for that condition. While cross-lingual transfer (XLT) methods have contributed to addressing this data scarcity problem, there still exists ongoing debate about the mechanisms behind their effectiveness. In this work, we focus on one of promising assumptions about inner workings of XLT, that it encourages multilingual LMs to place greater emphasis on language-agnostic or task-specific features. We test this hypothesis by examining how the patterns of XLT change with a varying number of source languages involved in the process. Our experimental findings show that the use of multiple source languages in XLT-a technique we term Multi-Source Language Training (MSLT)-leads to increased mingling of embedding spaces for different languages, supporting the claim that XLT benefits from making use of language-independent information. On the other hand, we discover that using an arbitrary combination of source languages does not always guarantee better performance. We suggest simple heuristics for identifying effective language combinations for MSLT and empirically prove its effectiveness.