Abstract:Recently, computer-aided design models and electromagnetic simulations have been used to augment synthetic aperture radar (SAR) data for deep learning. However, an automatic target recognition (ATR) model struggles with domain shift when using synthetic data because the model learns specific clutter patterns present in such data, which disturbs performance when applied to measured data with different clutter distributions. This study proposes a framework particularly designed for domain-generalized SAR-ATR called IRASNet, enabling effective feature-level clutter reduction and domain-invariant feature learning. First, we propose a clutter reduction module (CRM) that maximizes the signal-to-clutter ratio on feature maps. The module reduces the impact of clutter at the feature level while preserving target and shadow information, thereby improving ATR performance. Second, we integrate adversarial learning with CRM to extract clutter-reduced domain-invariant features. The integration bridges the gap between synthetic and measured datasets without requiring measured data during training. Third, we improve feature extraction from target and shadow regions by implementing a positional supervision task using mask ground truth encoding. The improvement enhances the ability of the model to discriminate between classes. Our proposed IRASNet presents new state-of-the-art public SAR datasets utilizing target and shadow information to achieve superior performance across various test conditions. IRASNet not only enhances generalization performance but also significantly improves feature-level clutter reduction, making it a valuable advancement in the field of radar image pattern recognition.
Abstract:We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons could have the same attribute, and persons' appearances look different, e.g., with viewpoint changes. Recent reID methods focus on learning person features discriminative only for a particular factor of variations (e.g., human pose), which also requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to factorize person images into identity-related and unrelated features. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose). To this end, we propose a new generative adversarial network, dubbed identity shuffle GAN (IS-GAN). It disentangles identity-related and unrelated features from person images through an identity-shuffling technique that exploits identification labels alone without any auxiliary supervisory signals. We restrict the distribution of identity-unrelated features or encourage the identity-related and unrelated features to be uncorrelated, facilitating the disentanglement process. Experimental results validate the effectiveness of IS-GAN, showing state-of-the-art performance on standard reID benchmarks, including Market-1501, CUHK03, and DukeMTMC-reID. We further demonstrate the advantages of disentangling person representations on a long-term reID task, setting a new state of the art on a Celeb-reID dataset.
Abstract:We present a novel unsupervised domain adaption method for person re-identification (reID) that generalizes a model trained on a labeled source domain to an unlabeled target domain. We introduce a camera-driven curriculum learning (CaCL) framework that leverages camera labels of person images to transfer knowledge from source to target domains progressively. To this end, we divide target domain dataset into multiple subsets based on the camera labels, and initially train our model with a single subset (i.e., images captured by a single camera). We then gradually exploit more subsets for training, according to a curriculum sequence obtained with a camera-driven scheduling rule. The scheduler considers maximum mean discrepancies (MMD) between each subset and the source domain dataset, such that the subset closer to the source domain is exploited earlier within the curriculum. For each curriculum sequence, we generate pseudo labels of person images in a target domain to train a reID model in a supervised way. We have observed that the pseudo labels are highly biased toward cameras, suggesting that person images obtained from the same camera are likely to have the same pseudo labels, even for different IDs. To address the camera bias problem, we also introduce a camera-diversity (CD) loss encouraging person images of the same pseudo label, but captured across various cameras, to involve more for discriminative feature learning, providing person representations robust to inter-camera variations. Experimental results on standard benchmarks, including real-to-real and synthetic-to-real scenarios, demonstrate the effectiveness of our framework.
Abstract:Sets have been used for modeling various types of objects (e.g., a document as the set of keywords in it and a customer as the set of the items that she has purchased). Measuring similarity (e.g., Jaccard Index) between sets has been a key building block of a wide range of applications, including, plagiarism detection, recommendation, and graph compression. However, as sets have grown in numbers and sizes, the computational cost and storage required for set similarity computation have become substantial, and this has led to the development of hashing and sketching based solutions. In this work, we propose Set2Box, a learning-based approach for compressed representations of sets from which various similarity measures can be estimated accurately in constant time. The key idea is to represent sets as boxes to precisely capture overlaps of sets. Additionally, based on the proposed box quantization scheme, we design Set2Box+, which yields more concise but more accurate box representations of sets. Through extensive experiments on 8 real-world datasets, we show that, compared to baseline approaches, Set2Box+ is (a) Accurate: achieving up to 40.8X smaller estimation error while requiring 60% fewer bits to encode sets, (b) Concise: yielding up to 96.8X more concise representations with similar estimation error, and (c) Versatile: enabling the estimation of four set-similarity measures from a single representation of each set.
Abstract:We present a novel unsupervised domain adaptation method for semantic segmentation that generalizes a model trained with source images and corresponding ground-truth labels to a target domain. A key to domain adaptive semantic segmentation is to learn domain-invariant and discriminative features without target ground-truth labels. To this end, we propose a bi-directional pixel-prototype contrastive learning framework that minimizes intra-class variations of features for the same object class, while maximizing inter-class variations for different ones, regardless of domains. Specifically, our framework aligns pixel-level features and a prototype of the same object class in target and source images (i.e., positive pairs), respectively, sets them apart for different classes (i.e., negative pairs), and performs the alignment and separation processes toward the other direction with pixel-level features in the source image and a prototype in the target image. The cross-domain matching encourages domain-invariant feature representations, while the bidirectional pixel-prototype correspondences aggregate features for the same object class, providing discriminative features. To establish training pairs for contrastive learning, we propose to generate dynamic pseudo labels of target images using a non-parametric label transfer, that is, pixel-prototype correspondences across different domains. We also present a calibration method compensating class-wise domain biases of prototypes gradually during training.
Abstract:Video-based person re-identification (reID) aims to retrieve person videos with the same identity as a query person across multiple cameras. Spatial and temporal distractors in person videos, such as background clutter and partial occlusions over frames, respectively, make this task much more challenging than image-based person reID. We observe that spatial distractors appear consistently in a particular location, and temporal distractors show several patterns, e.g., partial occlusions occur in the first few frames, where such patterns provide informative cues for predicting which frames to focus on (i.e., temporal attentions). Based on this, we introduce a novel Spatial and Temporal Memory Networks (STMN). The spatial memory stores features for spatial distractors that frequently emerge across video frames, while the temporal memory saves attentions which are optimized for typical temporal patterns in person videos. We leverage the spatial and temporal memories to refine frame-level person representations and to aggregate the refined frame-level features into a sequence-level person representation, respectively, effectively handling spatial and temporal distractors in person videos. We also introduce a memory spread loss preventing our model from addressing particular items only in the memories. Experimental results on standard benchmarks, including MARS, DukeMTMC-VideoReID, and LS-VID, demonstrate the effectiveness of our method.