Abstract:Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GLAD regard a graph with a high mean reconstruction error (i.e. mean of errors from all node pairs and/or nodes) as anomalies. Namely, the methods rest on the assumption that they would better reconstruct graphs with similar characteristics to the majority. We, however, report non-trivial counter-examples, a phenomenon we call reconstruction flip, and highlight the limitations of the existing Graph-AE-based GLAD methods. Specifically, we empirically and theoretically investigate when this assumption holds and when it fails. Through our analyses, we further argue that, while the reconstruction errors for a given graph are effective features for GLAD, leveraging the multifaceted summaries of the reconstruction errors, beyond just mean, can further strengthen the features. Thus, we propose a novel and simple GLAD method, named MUSE. The key innovation of MUSE involves taking multifaceted summaries of reconstruction errors as graph features for GLAD. This surprisingly simple method obtains SOTA performance in GLAD, performing best overall among 14 methods across 10 datasets.
Abstract:Recent advances in sensing and computer vision (CV) technologies have opened the door for the application of deep learning (DL)-based CV technologies in the realm of 6G wireless communications. For the successful application of this emerging technology, it is crucial to have a qualified vision dataset tailored for wireless applications (e.g., RGB images containing wireless devices such as laptops and cell phones). An aim of this paper is to propose a large-scale vision dataset referred to as Vision Objects for Millimeter and Terahertz Communications (VOMTC). The VOMTC dataset consists of 20,232 pairs of RGB and depth images obtained from a camera attached to the base station (BS), with each pair labeled with three representative object categories (person, cell phone, and laptop) and bounding boxes of the objects. Through experimental studies of the VOMTC datasets, we show that the beamforming technique exploiting the VOMTC-trained object detector outperforms conventional beamforming techniques.
Abstract:Graph Neural Networks (GNNs) have gained significant attention as a powerful modeling and inference method, especially for homophilic graph-structured data. To empower GNNs in heterophilic graphs, where adjacent nodes exhibit dissimilar labels or features, Signed Message Passing (SMP) has been widely adopted. However, there is a lack of theoretical and empirical analysis regarding the limitations of SMP. In this work, we unveil some potential pitfalls of SMP and their remedies. We first identify two limitations of SMP: undesirable representation update for multi-hop neighbors and vulnerability against oversmoothing issues. To overcome these challenges, we propose a novel message passing function called Multiset to Multiset GNN(M2M-GNN). Our theoretical analyses and extensive experiments demonstrate that M2M-GNN effectively alleviates the aforementioned limitations of SMP, yielding superior performance in comparison
Abstract:In this paper, we propose two-dimensional signal path classification (2D-SPC) for reconfigurable intelligent surface (RIS)-assisted near-field (NF) localization. In the NF regime, multiple RIS-driven signal paths (SPs) can contribute to precise localization if these are decomposable and the reflected locations on the RIS are known, referred to as SP decomposition (SPD) and SP labeling (SPL), respectively. To this end, each RIS element modulates the incoming SP's phase by shifting it by one of the values in the phase shift profile (PSP) lists satisfying resolution requirements. By interworking with a conventional orthogonal frequency division multiplexing (OFDM) waveform, the user equipment can construct a 2D spectrum map that couples each SPs time of arrival (ToA) and PSP. Then, we design SPL by mapping SPs with the corresponding reflected RIS elements when they share the same PSP. Given two unlabeled SPs, we derive a geometric discriminant from checking whether the current label is correct. It can be extended to more than three SPs by sorting them using pairwise geometric discriminants between adjacent ones. From simulation results, it has been demonstrated that the proposed 2D SPC achieves consistent localization accuracy even if insufficient PSPs are given.
Abstract:Recently, we are witnessing the remarkable progress and widespread adoption of sensing technologies in autonomous driving, robotics, and metaverse. Considering the rapid advancement of computer vision (CV) technology to analyze the sensing information, we anticipate a proliferation of wireless applications exploiting the sensing and CV technologies in 6G. In this article, we provide a holistic overview of the sensing and CV-aided wireless communications (SVWC) framework for 6G. By analyzing the high-resolution sensing information through the powerful CV techniques, SVWC can quickly and accurately understand the wireless environments and then perform the wireless tasks. To demonstrate the efficacy of SVWC, we design the whole process of SVWC including the sensing dataset collection, DL model training, and execution of realistic wireless tasks. From the numerical evaluations on 6G communication scenarios, we show that SVWC achieves considerable performance gains over the conventional 5G systems in terms of positioning accuracy, data rate, and access latency.
Abstract:Higher-order interactions (HOIs) are ubiquitous in real-world complex systems and applications, and thus investigation of deep learning for HOIs has become a valuable agenda for the data mining and machine learning communities. As networks of HOIs are expressed mathematically as hypergraphs, hypergraph neural networks (HNNs) have emerged as a powerful tool for representation learning on hypergraphs. Given the emerging trend, we present the first survey dedicated to HNNs, with an in-depth and step-by-step guide. Broadly, the present survey overviews HNN architectures, training strategies, and applications. First, we break existing HNNs down into four design components: (i) input features, (ii) input structures, (iii) message-passing schemes, and (iv) training strategies. Second, we examine how HNNs address and learn HOIs with each of their components. Third, we overview the recent applications of HNNs in recommendation, biological and medical science, time series analysis, and computer vision. Lastly, we conclude with a discussion on limitations and future directions.
Abstract:Hypergraphs are marked by complex topology, expressing higher-order interactions among multiple nodes with hyperedges, and better capturing the topology is essential for effective representation learning. Recent advances in generative self-supervised learning (SSL) suggest that hypergraph neural networks learned from generative self supervision have the potential to effectively encode the complex hypergraph topology. Designing a generative SSL strategy for hypergraphs, however, is not straightforward. Questions remain with regard to its generative SSL task, connection to downstream tasks, and empirical properties of learned representations. In light of the promises and challenges, we propose a novel generative SSL strategy for hypergraphs. We first formulate a generative SSL task on hypergraphs, hyperedge filling, and highlight its theoretical connection to node classification. Based on the generative SSL task, we propose a hypergraph SSL method, HypeBoy. HypeBoy learns effective general-purpose hypergraph representations, outperforming 16 baseline methods across 11 benchmark datasets.
Abstract:The success of a specific neural network architecture is closely tied to the dataset and task it tackles; there is no one-size-fits-all solution. Thus, considerable efforts have been made to quickly and accurately estimate the performances of neural architectures, without full training or evaluation, for given tasks and datasets. Neural architecture encoding has played a crucial role in the estimation, and graphbased methods, which treat an architecture as a graph, have shown prominent performance. For enhanced representation learning of neural architectures, we introduce FlowerFormer, a powerful graph transformer that incorporates the information flows within a neural architecture. FlowerFormer consists of two key components: (a) bidirectional asynchronous message passing, inspired by the flows; (b) global attention built on flow-based masking. Our extensive experiments demonstrate the superiority of FlowerFormer over existing neural encoding methods, and its effectiveness extends beyond computer vision models to include graph neural networks and auto speech recognition models. Our code is available at http://github.com/y0ngjaenius/CVPR2024_FLOWERFormer.
Abstract:To detect anomalies in real-world graphs, such as social, email, and financial networks, various approaches have been developed. While they typically assume static input graphs, most real-world graphs grow over time, naturally represented as edge streams. In this context, we aim to achieve three goals: (a) instantly detecting anomalies as they occur, (b) adapting to dynamically changing states, and (c) handling the scarcity of dynamic anomaly labels. In this paper, we propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams, without relying on labels. SLADE detects the shifts of nodes into abnormal states by observing deviations in their interaction patterns over time. To this end, it trains a deep neural network to perform two self-supervised tasks: (a) minimizing drift in node representations and (b) generating long-term interaction patterns from short-term ones. Failure in these tasks for a node signals its deviation from the norm. Notably, the neural network and tasks are carefully designed so that all required operations can be performed in constant time (w.r.t. the graph size) in response to each new edge in the input stream. In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods, even those leveraging label supervision.
Abstract:How would randomly shuffling feature vectors among nodes from the same class affect graph neural networks (GNNs)? The feature shuffle, intuitively, perturbs the dependence between graph topology and features (A-X dependence) for GNNs to learn from. Surprisingly, we observe a consistent and significant improvement in GNN performance following the feature shuffle. Having overlooked the impact of A-X dependence on GNNs, the prior literature does not provide a satisfactory understanding of the phenomenon. Thus, we raise two research questions. First, how should A-X dependence be measured, while controlling for potential confounds? Second, how does A-X dependence affect GNNs? In response, we (i) propose a principled measure for A-X dependence, (ii) design a random graph model that controls A-X dependence, (iii) establish a theory on how A-X dependence relates to graph convolution, and (iv) present empirical analysis on real-world graphs that aligns with the theory. We conclude that A-X dependence mediates the effect of graph convolution, such that smaller dependence improves GNN-based node classification.