Abstract:Document comparison typically relies on optical character recognition (OCR) as its core technology. However, OCR requires the selection of appropriate language models for each document and the performance of multilingual or hybrid models remains limited. To overcome these challenges, we propose text change detection (TCD) using an image comparison model tailored for multilingual documents. Unlike OCR-based approaches, our method employs word-level text image-to-image comparison to detect changes. Our model generates bidirectional change segmentation maps between the source and target documents. To enhance performance without requiring explicit text alignment or scaling preprocessing, we employ correlations among multi-scale attention features. We also construct a benchmark dataset comprising actual printed and scanned word pairs in various languages to evaluate our model. We validate our approach using our benchmark dataset and public benchmarks Distorted Document Images and the LRDE Document Binarization Dataset. We compare our model against state-of-the-art semantic segmentation and change detection models, as well as to conventional OCR-based models.
Abstract:State-of-the-art text-to-image (T2I) diffusion models often struggle to generate rare compositions of concepts, e.g., objects with unusual attributes. In this paper, we show that the compositional generation power of diffusion models on such rare concepts can be significantly enhanced by the Large Language Model (LLM) guidance. We start with empirical and theoretical analysis, demonstrating that exposing frequent concepts relevant to the target rare concepts during the diffusion sampling process yields more accurate concept composition. Based on this, we propose a training-free approach, R2F, that plans and executes the overall rare-to-frequent concept guidance throughout the diffusion inference by leveraging the abundant semantic knowledge in LLMs. Our framework is flexible across any pre-trained diffusion models and LLMs, and can be seamlessly integrated with the region-guided diffusion approaches. Extensive experiments on three datasets, including our newly proposed benchmark, RareBench, containing various prompts with rare compositions of concepts, R2F significantly surpasses existing models including SD3.0 and FLUX by up to 28.1%p in T2I alignment. Code is available at https://github.com/krafton-ai/Rare2Frequent.
Abstract:Transparent models, which are machine learning models that produce inherently interpretable predictions, are receiving significant attention in high-stakes domains. However, despite much real-world data being collected as time series, there is a lack of studies on transparent time series models. To address this gap, we propose a novel transparent neural network model for time series called Generalized Additive Time Series Model (GATSM). GATSM consists of two parts: 1) independent feature networks to learn feature representations, and 2) a transparent temporal module to learn temporal patterns across different time steps using the feature representations. This structure allows GATSM to effectively capture temporal patterns and handle dynamic-length time series while preserving transparency. Empirical experiments show that GATSM significantly outperforms existing generalized additive models and achieves comparable performance to black-box time series models, such as recurrent neural networks and Transformer. In addition, we demonstrate that GATSM finds interesting patterns in time series. The source code is available at https://github.com/gim4855744/GATSM.
Abstract:We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace (https://huggingface.co/datasets/sean0042/KorMedMCQA) and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.
Abstract:Recent advances in text-guided image compression have shown great potential to enhance the perceptual quality of reconstructed images. These methods, however, tend to have significantly degraded pixel-wise fidelity, limiting their practicality. To fill this gap, we develop a new text-guided image compression algorithm that achieves both high perceptual and pixel-wise fidelity. In particular, we propose a compression framework that leverages text information mainly by text-adaptive encoding and training with joint image-text loss. By doing so, we avoid decoding based on text-guided generative models -- known for high generative diversity -- and effectively utilize the semantic information of text at a global level. Experimental results on various datasets show that our method can achieve high pixel-level and perceptual quality, with either human- or machine-generated captions. In particular, our method outperforms all baselines in terms of LPIPS, with some room for even more improvements when we use more carefully generated captions.
Abstract:We introduce QUICK, a group of novel optimized CUDA kernels for the efficient inference of quantized Large Language Models (LLMs). QUICK addresses the shared memory bank-conflict problem of state-of-the-art mixed precision matrix multiplication kernels. Our method interleaves the quantized weight matrices of LLMs offline to skip the shared memory write-back after the dequantization. We demonstrate up to 1.91x speedup over existing kernels of AutoAWQ on larger batches and up to 1.94x throughput gain on representative LLM models on various NVIDIA GPU devices.
Abstract:Classical clustering methods do not provide users with direct control of the clustering results, and the clustering results may not be consistent with the relevant criterion that a user has in mind. In this work, we present a new methodology for performing image clustering based on user-specified text criteria by leveraging modern vision-language models and large language models. We call our method Image Clustering Conditioned on Text Criteria (IC$|$TC), and it represents a different paradigm of image clustering. IC$|$TC requires a minimal and practical degree of human intervention and grants the user significant control over the clustering results in return. Our experiments show that IC$|$TC can effectively cluster images with various criteria, such as human action, physical location, or the person's mood, while significantly outperforming baselines.
Abstract:This paper introduces LIVE: Lidar Informed Visual Search focused on the problem of multi-robot (MR) planning and execution for robust visual detection of multiple objects. We perform extensive real-world experiments with a two-robot team in an indoor apartment setting. LIVE acts as a perception module that detects unmapped obstacles, or Short Term Features (STFs), in Lidar observations. STFs are filtered, resulting in regions to be visually inspected by modifying plans online. Lidar Coverage Path Planning (CPP) is employed for generating highly efficient global plans for heterogeneous robot teams. Finally, we present a data model and a demonstration dataset, which can be found by visiting our project website https://sites.google.com/view/live-iros2023/home.
Abstract:The emergence of diffusion models has greatly broadened the scope of high-fidelity image synthesis, resulting in notable advancements in both practical implementation and academic research. With the active adoption of the model in various real-world applications, the need for on-device deployment has grown considerably. However, deploying large diffusion models such as Stable Diffusion with more than one billion parameters to mobile devices poses distinctive challenges due to the limited computational and memory resources, which may vary according to the device. In this paper, we present the challenges and solutions for deploying Stable Diffusion on mobile devices with TensorFlow Lite framework, which supports both iOS and Android devices. The resulting Mobile Stable Diffusion achieves the inference latency of smaller than 7 seconds for a 512x512 image generation on Android devices with mobile GPUs.
Abstract:Vision-language models, such as contrastive language-image pre-training (CLIP), have demonstrated impressive results in natural image domains. However, these models often struggle when applied to specialized domains like remote sensing, and adapting to such domains is challenging due to the limited number of image-text pairs available for training. To address this, we propose S-CLIP, a semi-supervised learning method for training CLIP that utilizes additional unpaired images. S-CLIP employs two pseudo-labeling strategies specifically designed for contrastive learning and the language modality. The caption-level pseudo-label is given by a combination of captions of paired images, obtained by solving an optimal transport problem between unpaired and paired images. The keyword-level pseudo-label is given by a keyword in the caption of the nearest paired image, trained through partial label learning that assumes a candidate set of labels for supervision instead of the exact one. By combining these objectives, S-CLIP significantly enhances the training of CLIP using only a few image-text pairs, as demonstrated in various specialist domains, including remote sensing, fashion, scientific figures, and comics. For instance, S-CLIP improves CLIP by 10% for zero-shot classification and 4% for image-text retrieval on the remote sensing benchmark, matching the performance of supervised CLIP while using three times fewer image-text pairs.