Abstract:Massive activations, which manifest in specific feature dimensions of hidden states, introduce a significant bias in large language models (LLMs), leading to an overemphasis on the corresponding token. In this paper, we identify that massive activations originate not from the hidden state but from the intermediate state of a feed-forward network module in an early layer. Expanding on the previous observation that massive activations occur only in specific feature dimensions, we dive deep into the weights that cause massive activations. Specifically, we define top-$k$ massive weights as the weights that contribute to the dimensions with the top-$k$ magnitudes in the intermediate state. When these massive weights are set to zero, the functionality of LLMs is entirely disrupted. However, when all weights except for massive weights are set to zero, it results in a relatively minor performance drop, even though a much larger number of weights are set to zero. This implies that during the pre-training process, learning is dominantly focused on massive weights. Building on this observation, we propose a simple plug-and-play method called MacDrop (massive weights curriculum dropout), to rely less on massive weights during parameter-efficient fine-tuning. This method applies dropout to the pre-trained massive weights, starting with a high dropout probability and gradually decreasing it as fine-tuning progresses. Through experiments, we demonstrate that MacDrop generally improves performance across zero-shot downstream tasks and generation tasks.
Abstract:Recent advances in text-guided image compression have shown great potential to enhance the perceptual quality of reconstructed images. These methods, however, tend to have significantly degraded pixel-wise fidelity, limiting their practicality. To fill this gap, we develop a new text-guided image compression algorithm that achieves both high perceptual and pixel-wise fidelity. In particular, we propose a compression framework that leverages text information mainly by text-adaptive encoding and training with joint image-text loss. By doing so, we avoid decoding based on text-guided generative models -- known for high generative diversity -- and effectively utilize the semantic information of text at a global level. Experimental results on various datasets show that our method can achieve high pixel-level and perceptual quality, with either human- or machine-generated captions. In particular, our method outperforms all baselines in terms of LPIPS, with some room for even more improvements when we use more carefully generated captions.
Abstract:Neural video compression (NVC) is a rapidly evolving video coding research area, with some models achieving superior coding efficiency compared to the latest video coding standard Versatile Video Coding (VVC). In conventional video coding standards, the hierarchical B-frame coding, which utilizes a bidirectional prediction structure for higher compression, had been well-studied and exploited. In NVC, however, limited research has investigated the hierarchical B scheme. In this paper, we propose an NVC model exploiting hierarchical B-frame coding with temporal layer-adaptive optimization. We first extend an existing unidirectional NVC model to a bidirectional model, which achieves -21.13% BD-rate gain over the unidirectional baseline model. However, this model faces challenges when applied to sequences with complex or large motions, leading to performance degradation. To address this, we introduce temporal layer-adaptive optimization, incorporating methods such as temporal layer-adaptive quality scaling (TAQS) and temporal layer-adaptive latent scaling (TALS). The final model with the proposed methods achieves an impressive BD-rate gain of -39.86% against the baseline. It also resolves the challenges in sequences with large or complex motions with up to -49.13% more BD-rate gains than the simple bidirectional extension. This improvement is attributed to the allocation of more bits to lower temporal layers, thereby enhancing overall reconstruction quality with smaller bits. Since our method has little dependency on a specific NVC model architecture, it can serve as a general tool for extending unidirectional NVC models to the ones with hierarchical B-frame coding.