Abstract:In-context learning (ICL) describes a language model's ability to generate outputs based on a set of input demonstrations and a subsequent query. To understand this remarkable capability, researchers have studied simplified, stylized models. These studies have consistently observed long loss plateaus, during which models exhibit minimal improvement, followed by a sudden, rapid surge of learning. In this work, we reveal that training on multiple diverse ICL tasks simultaneously shortens the loss plateaus, making each task easier to learn. This finding is surprising as it contradicts the natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it. Our result suggests that the recent success in large-scale training of language models may be attributed not only to the richness of the data at scale but also to the easier optimization (training) induced by the diversity of natural language training data.
Abstract:Classical clustering methods do not provide users with direct control of the clustering results, and the clustering results may not be consistent with the relevant criterion that a user has in mind. In this work, we present a new methodology for performing image clustering based on user-specified text criteria by leveraging modern vision-language models and large language models. We call our method Image Clustering Conditioned on Text Criteria (IC$|$TC), and it represents a different paradigm of image clustering. IC$|$TC requires a minimal and practical degree of human intervention and grants the user significant control over the clustering results in return. Our experiments show that IC$|$TC can effectively cluster images with various criteria, such as human action, physical location, or the person's mood, while significantly outperforming baselines.
Abstract:In many computer vision applications, images are acquired with arbitrary or random rotations and translations, and in such setups, it is desirable to obtain semantic representations disentangled from the image orientation. Examples of such applications include semiconductor wafer defect inspection, plankton microscope images, and inference on single-particle cryo-electron microscopy (cryo-EM) micro-graphs. In this work, we propose Invariant Representation Learning with Implicit Neural Representation (IRL-INR), which uses an implicit neural representation (INR) with a hypernetwork to obtain semantic representations disentangled from the orientation of the image. We show that IRL-INR can effectively learn disentangled semantic representations on more complex images compared to those considered in prior works and show that these semantic representations synergize well with SCAN to produce state-of-the-art unsupervised clustering results.