KAIST
Abstract:Generative AI models ought to be useful and safe across cross-cultural contexts. One critical step toward this goal is understanding how AI models adhere to sociocultural norms. While this challenge has gained attention in NLP, existing work lacks both nuance and coverage in understanding and evaluating models' norm adherence. We address these gaps by introducing a taxonomy of norms that clarifies their contexts (e.g., distinguishing between human-human norms that models should recognize and human-AI interactional norms that apply to the human-AI interaction itself), specifications (e.g., relevant domains), and mechanisms (e.g., modes of enforcement). We demonstrate how our taxonomy can be operationalized to automatically evaluate models' norm adherence in naturalistic, open-ended settings. Our exploratory analyses suggest that state-of-the-art models frequently violate norms, though violation rates vary by model, interactional context, and country. We further show that violation rates also vary by prompt intent and situational framing. Our taxonomy and demonstrative evaluation pipeline enable nuanced, context-sensitive evaluation of cultural norm adherence in realistic settings.
Abstract:We introduce Solar Open, a 102B-parameter bilingual Mixture-of-Experts language model for underserved languages. Solar Open demonstrates a systematic methodology for building competitive LLMs by addressing three interconnected challenges. First, to train effectively despite data scarcity for underserved languages, we synthesize 4.5T tokens of high-quality, domain-specific, and RL-oriented data. Second, we coordinate this data through a progressive curriculum jointly optimizing composition, quality thresholds, and domain coverage across 20 trillion tokens. Third, to enable reasoning capabilities through scalable RL, we apply our proposed framework SnapPO for efficient optimization. Across benchmarks in English and Korean, Solar Open achieves competitive performance, demonstrating the effectiveness of this methodology for underserved language AI development.
Abstract:Code-switching, alternating between languages within a conversation, is natural for multilingual users, yet poses fundamental challenges for large language models (LLMs). When a user code-switches in their prompt to an LLM, they typically do not specify the expected language of the LLM response, and thus LLMs must infer the output language from contextual and pragmatic cues. We find that current LLMs systematically fail to align with this expectation, responding in undesired languages even when cues are clear to humans. We introduce OLA, a benchmark to evaluate LLMs' Output Language Alignment in code-switched interactions. OLA focuses on Korean--English code-switching and spans simple intra-sentential mixing to instruction-content mismatches. Even frontier models frequently misinterpret implicit language expectation, exhibiting a bias toward non-English responses. We further show this bias generalizes beyond Korean to Chinese and Indonesian pairs. Models also show instability through mid-response switching and language intrusions. Chain-of-Thought prompting fails to resolve these errors, indicating weak pragmatic reasoning about output language. However, Code-Switching Aware DPO with minimal data (about 1K examples) substantially reduces misalignment, suggesting these failures stem from insufficient alignment rather than fundamental limitations. Our results highlight the need to align multilingual LLMs with users' implicit expectations in real-world code-switched interactions.



Abstract:Personalized learning has gained attention in English as a Foreign Language (EFL) education, where engagement and motivation play crucial roles in reading comprehension. We propose a novel approach to generating personalized English reading comprehension tests tailored to students' interests. We develop a structured content transcreation pipeline using OpenAI's gpt-4o, where we start with the RACE-C dataset, and generate new passages and multiple-choice reading comprehension questions that are linguistically similar to the original passages but semantically aligned with individual learners' interests. Our methodology integrates topic extraction, question classification based on Bloom's taxonomy, linguistic feature analysis, and content transcreation to enhance student engagement. We conduct a controlled experiment with EFL learners in South Korea to examine the impact of interest-aligned reading materials on comprehension and motivation. Our results show students learning with personalized reading passages demonstrate improved comprehension and motivation retention compared to those learning with non-personalized materials.
Abstract:As large language models (LLMs) are increasingly used in human-AI interactions, their social reasoning capabilities in interpersonal contexts are critical. We introduce SCRIPTS, a 1k-dialogue dataset in English and Korean, sourced from movie scripts. The task involves evaluating models' social reasoning capability to infer the interpersonal relationships (e.g., friends, sisters, lovers) between speakers in each dialogue. Each dialogue is annotated with probabilistic relational labels (Highly Likely, Less Likely, Unlikely) by native (or equivalent) Korean and English speakers from Korea and the U.S. Evaluating nine models on our task, current proprietary LLMs achieve around 75-80% on the English dataset, whereas their performance on Korean drops to 58-69%. More strikingly, models select Unlikely relationships in 10-25% of their responses. Furthermore, we find that thinking models and chain-of-thought prompting, effective for general reasoning, provide minimal benefits for social reasoning and occasionally amplify social biases. Our findings reveal significant limitations in current LLMs' social reasoning capabilities, highlighting the need for efforts to develop socially-aware language models.




Abstract:This work presents the first large-scale investigation into constructing a fully open bilingual large language model (LLM) for a non-English language, specifically Korean, trained predominantly on synthetic data. We introduce KORMo-10B, a 10.8B-parameter model trained from scratch on a Korean-English corpus in which 68.74% of the Korean portion is synthetic. Through systematic experimentation, we demonstrate that synthetic data, when carefully curated with balanced linguistic coverage and diverse instruction styles, does not cause instability or degradation during large-scale pretraining. Furthermore, the model achieves performance comparable to that of contemporary open-weight multilingual baselines across a wide range of reasoning, knowledge, and instruction-following benchmarks. Our experiments reveal two key findings: (1) synthetic data can reliably sustain long-horizon pretraining without model collapse, and (2) bilingual instruction tuning enables near-native reasoning and discourse coherence in Korean. By fully releasing all components including data, code, training recipes, and logs, this work establishes a transparent framework for developing synthetic data-driven fully open models (FOMs) in low-resource settings and sets a reproducible precedent for future multilingual LLM research.
Abstract:The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a better understanding of how the overgeneralization of less documented cultures within LLMs' representations impacts their cultural understanding. Prior work only performs extrinsic evaluation of LLMs' cultural competence, without accounting for how LLMs' internal mechanisms lead to cultural (mis)representation. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of LLMs to elicit the underlying cultural knowledge space. CultureScope utilizes a patching method to extract the cultural knowledge. We introduce a cultural flattening score as a measure of the intrinsic cultural biases. Additionally, we study how LLMs internalize Western-dominance bias and cultural flattening, which allows us to trace how cultural biases emerge within LLMs. Our experimental results reveal that LLMs encode Western-dominance bias and cultural flattening in their cultural knowledge space. We find that low-resource cultures are less susceptible to cultural biases, likely due to their limited training resources. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding. Our codes and data used for experiments are publicly available.




Abstract:Understanding how large language models (LLMs) internally represent and process their predictions is central to detecting uncertainty and preventing hallucinations. While several studies have shown that models encode uncertainty in their hidden states, it is underexplored how this affects the way they process such hidden states. In this work, we demonstrate that the dynamics of output token probabilities across layers for certain and uncertain outputs are largely aligned, revealing that uncertainty does not seem to affect inference dynamics. Specifically, we use the Tuned Lens, a variant of the Logit Lens, to analyze the layer-wise probability trajectories of final prediction tokens across 11 datasets and 5 models. Using incorrect predictions as those with higher epistemic uncertainty, our results show aligned trajectories for certain and uncertain predictions that both observe abrupt increases in confidence at similar layers. We balance this finding by showing evidence that more competent models may learn to process uncertainty differently. Our findings challenge the feasibility of leveraging simplistic methods for detecting uncertainty at inference. More broadly, our work demonstrates how interpretability methods may be used to investigate the way uncertainty affects inference.
Abstract:Ensuring persona fidelity in large language models (LLMs) is essential for maintaining coherent and engaging human-AI interactions. However, LLMs often exhibit Out-of-Character (OOC) behavior, where generated responses deviate from an assigned persona, leading to inconsistencies that affect model reliability. Existing evaluation methods typically assign single scores to entire responses, struggling to capture subtle persona misalignment, particularly in long-form text generation. To address this limitation, we propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity. Our three key metrics measure the degree of persona alignment and consistency within and across generations. Our approach enables a more precise and realistic assessment of persona fidelity by identifying subtle deviations that real users would encounter. Through our experiments, we demonstrate that our framework effectively detects persona inconsistencies that prior methods overlook. By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability, highlighting challenges in maintaining consistent persona expression.
Abstract:Real-world planning problems require constant adaptation to changing requirements and balancing of competing constraints. However, current benchmarks for evaluating LLMs' planning capabilities primarily focus on static, single-turn scenarios. We introduce Flex-TravelPlanner, a benchmark that evaluates language models' ability to reason flexibly in dynamic planning scenarios. Building on the TravelPlanner dataset~\citep{xie2024travelplanner}, we introduce two novel evaluation settings: (1) sequential constraint introduction across multiple turns, and (2) scenarios with explicitly prioritized competing constraints. Our analysis of GPT-4o and Llama 3.1 70B reveals several key findings: models' performance on single-turn tasks poorly predicts their ability to adapt plans across multiple turns; constraint introduction order significantly affects performance; and models struggle with constraint prioritization, often incorrectly favoring newly introduced lower priority preferences over existing higher-priority constraints. These findings highlight the importance of evaluating LLMs in more realistic, dynamic planning scenarios and suggest specific directions for improving model performance on complex planning tasks. The code and dataset for our framework are publicly available at https://github.com/juhyunohh/FlexTravelBench.