Abstract:We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
Abstract:Large language models (LLMs) often reflect real-world biases, leading to efforts to mitigate these effects and make the models unbiased. Achieving this goal requires defining clear criteria for an unbiased state, with any deviation from these criteria considered biased. Some studies define an unbiased state as equal treatment across diverse demographic groups, aiming for balanced outputs from LLMs. However, differing perspectives on equality and the importance of pluralism make it challenging to establish a universal standard. Alternatively, other approaches propose using fact-based criteria for more consistent and objective evaluations, though these methods have not yet been fully applied to LLM bias assessments. Thus, there is a need for a metric with objective criteria that offers a distinct perspective from equality-based approaches. Motivated by this need, we introduce a novel metric to assess bias using fact-based criteria and real-world statistics. In this paper, we conducted a human survey demonstrating that humans tend to perceive LLM outputs more positively when they align closely with real-world demographic distributions. Evaluating various LLMs with our proposed metric reveals that model bias varies depending on the criteria used, highlighting the need for multi-perspective assessment.
Abstract:Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Abstract:Social bias is shaped by the accumulation of social perceptions towards targets across various demographic identities. To fully understand such social bias in large language models (LLMs), it is essential to consider the composite of social perceptions from diverse perspectives among identities. Previous studies have either evaluated biases in LLMs by indirectly assessing the presence of sentiments towards demographic identities in the generated text or measuring the degree of alignment with given stereotypes. These methods have limitations in directly quantifying social biases at the level of distinct perspectives among identities. In this paper, we aim to investigate how social perceptions from various viewpoints contribute to the development of social bias in LLMs. To this end, we propose a novel strategy to intuitively quantify these social perceptions and suggest metrics that can evaluate the social biases within LLMs by aggregating diverse social perceptions. The experimental results show the quantitative demonstration of the social attitude in LLMs by examining social perception. The analysis we conducted shows that our proposed metrics capture the multi-dimensional aspects of social bias, enabling a fine-grained and comprehensive investigation of bias in LLMs.
Abstract:Social media is one of the most highly sought resources for analyzing characteristics of the language by its users. In particular, many researchers utilized various linguistic features of mental health problems from social media. However, existing approaches to detecting mental disorders face critical challenges, such as the scarcity of high-quality data or the trade-off between addressing the complexity of models and presenting interpretable results grounded in expert domain knowledge. To address these challenges, we design a simple but flexible model that preserves domain-based interpretability. We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions. Experimental results demonstrate that our model outperforms relevant baselines on various mental disorder detection tasks. Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
Abstract:Online trolls increase social costs and cause psychological damage to individuals. With the proliferation of automated accounts making use of bots for trolling, it is difficult for targeted individual users to handle the situation both quantitatively and qualitatively. To address this issue, we focus on automating the method to counter trolls, as counter responses to combat trolls encourage community users to maintain ongoing discussion without compromising freedom of expression. For this purpose, we propose a novel dataset for automatic counter response generation. In particular, we constructed a pair-wise dataset that includes troll comments and counter responses with labeled response strategies, which enables models fine-tuned on our dataset to generate responses by varying counter responses according to the specified strategy. We conducted three tasks to assess the effectiveness of our dataset and evaluated the results through both automatic and human evaluation. In human evaluation, we demonstrate that the model fine-tuned on our dataset shows a significantly improved performance in strategy-controlled sentence generation.