Abstract:Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Abstract:Gloss-free Sign Language Translation (SLT) converts sign videos directly into spoken language sentences without relying on glosses. Recently, Large Language Models (LLMs) have shown remarkable translation performance in gloss-free methods by harnessing their powerful natural language generation capabilities. However, these methods often rely on domain-specific fine-tuning of visual encoders to achieve optimal results. By contrast, this paper emphasizes the importance of capturing the spatial configurations and motion dynamics inherent in sign language. With this in mind, we introduce Spatial and Motion-based Sign Language Translation (SpaMo), a novel LLM-based SLT framework. The core idea of SpaMo is simple yet effective. We first extract spatial and motion features using off-the-shelf visual encoders and then input these features into an LLM with a language prompt. Additionally, we employ a visual-text alignment process as a warm-up before the SLT supervision. Our experiments demonstrate that SpaMo achieves state-of-the-art performance on two popular datasets, PHOENIX14T and How2Sign.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly improved their performance across various Natural Language Processing (NLP) tasks. However, LLMs still struggle with generating non-factual responses due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) systems address this issue by incorporating external knowledge with a retrieval module. Despite their successes, however, current RAG systems face challenges with retrieval failures and the limited ability of LLMs to filter out irrelevant information. Therefore, in this work, we propose \textit{\textbf{DSLR}} (\textbf{D}ocument Refinement with \textbf{S}entence-\textbf{L}evel \textbf{R}e-ranking and Reconstruction), an unsupervised framework that decomposes retrieved documents into sentences, filters out irrelevant sentences, and reconstructs them again into coherent passages. We experimentally validate \textit{DSLR} on multiple open-domain QA datasets and the results demonstrate that \textit{DSLR} significantly enhances the RAG performance over conventional fixed-size passage. Furthermore, our \textit{DSLR} enhances performance in specific, yet realistic scenarios without the need for additional training, providing an effective and efficient solution for refining retrieved documents in RAG systems.
Abstract:Sign language, essential for the deaf and hard-of-hearing, presents unique challenges in translation and production due to its multimodal nature and the inherent ambiguity in mapping sign language motion to spoken language words. Previous methods often rely on gloss annotations, requiring time-intensive labor and specialized expertise in sign language. Gloss-free methods have emerged to address these limitations, but they often depend on external sign language data or dictionaries, failing to completely eliminate the need for gloss annotations. There is a clear demand for a comprehensive approach that can supplant gloss annotations and be utilized for both Sign Language Translation (SLT) and Sign Language Production (SLP). We introduce Universal Gloss-level Representation (UniGloR), a unified and self-supervised solution for both SLT and SLP, trained on multiple datasets including PHOENIX14T, How2Sign, and NIASL2021. Our results demonstrate UniGloR's effectiveness in the translation and production tasks. We further report an encouraging result for the Sign Language Recognition (SLR) on previously unseen data. Our study suggests that self-supervised learning can be made in a unified manner, paving the way for innovative and practical applications in future research.
Abstract:Information retrieval models that aim to search for the documents relevant to the given query have shown many successes, which have been applied to diverse tasks. However, the query provided by the user is oftentimes very short, which challenges the retrievers to correctly fetch relevant documents. To tackle this, existing studies have proposed expanding the query with a couple of additional (user-related) features related to the query. Yet, they may be suboptimal to effectively augment the query, though there is plenty of information available to augment it in a relational database. Motivated by this, we present a novel retrieval framework called Database-Augmented Query representation (DAQu), which augments the original query with various (query-related) metadata across multiple tables. In addition, as the number of features in the metadata can be very large and there is no order among them, we encode them with our graph-based set encoding strategy, which considers hierarchies of features in the database without order. We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database, demonstrating that ours significantly enhances overall retrieval performance, compared to existing query augmentation methods.
Abstract:Recent language models have shown remarkable performance on natural language understanding (NLU) tasks. However, they are often sub-optimal when faced with ambiguous samples that can be interpreted in multiple ways, over-confidently predicting a single label without consideration for its correctness. To address this issue, we propose a novel self-knowledge distillation method that enables models to learn label distributions more accurately by leveraging knowledge distilled from their lower layers. This approach also includes a learning phase that re-calibrates the unnecessarily strengthened confidence for training samples judged as extremely ambiguous based on the distilled distribution knowledge. We validate our method on diverse NLU benchmark datasets and the experimental results demonstrate its effectiveness in producing better label distributions. Particularly, through the process of re-calibrating the confidence for highly ambiguous samples, the issue of over-confidence when predictions for unseen samples do not match with their ground-truth labels has been significantly alleviated. This has been shown to contribute to generating better distributions than the existing state-of-the-art method. Moreover, our method is more efficient in training the models compared to the existing method, as it does not involve additional training processes to refine label distributions.
Abstract:The robustness of recent Large Language Models (LLMs) has become increasingly crucial as their applicability expands across various domains and real-world applications. Retrieval-Augmented Generation (RAG) is a promising solution for addressing the limitations of LLMs, yet existing studies on the robustness of RAG often overlook the interconnected relationships between RAG components or the potential threats prevalent in real-world databases, such as minor textual errors. In this work, we investigate two underexplored aspects when assessing the robustness of RAG: 1) vulnerability to noisy documents through low-level perturbations and 2) a holistic evaluation of RAG robustness. Furthermore, we introduce a novel attack method, the Genetic Attack on RAG (\textit{GARAG}), which targets these aspects. Specifically, GARAG is designed to reveal vulnerabilities within each component and test the overall system functionality against noisy documents. We validate RAG robustness by applying our \textit{GARAG} to standard QA datasets, incorporating diverse retrievers and LLMs. The experimental results show that GARAG consistently achieves high attack success rates. Also, it significantly devastates the performance of each component and their synergy, highlighting the substantial risk that minor textual inaccuracies pose in disrupting RAG systems in the real world.
Abstract:Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA). However, even though there are various approaches dealing with queries of different complexities, they either handle simple queries with unnecessary computational overhead or fail to adequately address complex multi-step queries; yet, not all user requests fall into only one of the simple or complex categories. In this work, we propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs from the simplest to the most sophisticated ones based on the query complexity. Also, this selection process is operationalized with a classifier, which is a smaller LM trained to predict the complexity level of incoming queries with automatically collected labels, obtained from actual predicted outcomes of models and inherent inductive biases in datasets. This approach offers a balanced strategy, seamlessly adapting between the iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval methods, in response to a range of query complexities. We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems, compared to relevant baselines including the adaptive retrieval approaches. Code is available at: https://github.com/starsuzi/Adaptive-RAG.
Abstract:Large language models (LLMs) enable zero-shot approaches in open-domain question answering (ODQA), yet with limited advancements as the reader is compared to the retriever. This study aims at the feasibility of a zero-shot reader that addresses the challenges of computational cost and the need for labeled data. We find that LLMs are distracted due to irrelevant documents in the retrieved set and the overconfidence of the generated answers when they are exploited as zero-shot readers. To tackle these problems, we mitigate the impact of such documents via Distraction-aware Answer Selection (DAS) with a negation-based instruction and score adjustment for proper answer selection. Experimental results show that our approach successfully handles distraction across diverse scenarios, enhancing the performance of zero-shot readers. Furthermore, unlike supervised readers struggling with unseen data, zero-shot readers demonstrate outstanding transferability without any training.
Abstract:Recent instruction-finetuned large language models (LMs) have achieved notable performances in various tasks, such as question-answering (QA). However, despite their ability to memorize a vast amount of general knowledge across diverse tasks, they might be suboptimal on specific tasks due to their limited capacity to transfer and adapt knowledge to target tasks. Moreover, further finetuning LMs with labeled datasets is often infeasible due to their absence, but it is also questionable if we can transfer smaller LMs having limited knowledge only with unlabeled test data. In this work, we show and investigate the capabilities of smaller self-adaptive LMs, only with unlabeled test data. In particular, we first stochastically generate multiple answers, and then ensemble them while filtering out low-quality samples to mitigate noise from inaccurate labels. Our proposed self-adaption strategy demonstrates significant performance improvements on benchmark QA datasets with higher robustness across diverse prompts, enabling LMs to stay stable. Code is available at: https://github.com/starsuzi/T-SAS.