Department of Computer and Information Science, University of Pennsylvania
Abstract:In Masked Image Modeling (MIM), two primary methods exist: Pixel MIM and Latent MIM, each utilizing different reconstruction targets, raw pixels and latent representations, respectively. Pixel MIM tends to capture low-level visual details such as color and texture, while Latent MIM focuses on high-level semantics of an object. However, these distinct strengths of each method can lead to suboptimal performance in tasks that rely on a particular level of visual features. To address this limitation, we propose PiLaMIM, a unified framework that combines Pixel MIM and Latent MIM to integrate their complementary strengths. Our method uses a single encoder along with two distinct decoders: one for predicting pixel values and another for latent representations, ensuring the capture of both high-level and low-level visual features. We further integrate the CLS token into the reconstruction process to aggregate global context, enabling the model to capture more semantic information. Extensive experiments demonstrate that PiLaMIM outperforms key baselines such as MAE, I-JEPA and BootMAE in most cases, proving its effectiveness in extracting richer visual representations.
Abstract:We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
Abstract:Large language models (LLMs) often reflect real-world biases, leading to efforts to mitigate these effects and make the models unbiased. Achieving this goal requires defining clear criteria for an unbiased state, with any deviation from these criteria considered biased. Some studies define an unbiased state as equal treatment across diverse demographic groups, aiming for balanced outputs from LLMs. However, differing perspectives on equality and the importance of pluralism make it challenging to establish a universal standard. Alternatively, other approaches propose using fact-based criteria for more consistent and objective evaluations, though these methods have not yet been fully applied to LLM bias assessments. Thus, there is a need for a metric with objective criteria that offers a distinct perspective from equality-based approaches. Motivated by this need, we introduce a novel metric to assess bias using fact-based criteria and real-world statistics. In this paper, we conducted a human survey demonstrating that humans tend to perceive LLM outputs more positively when they align closely with real-world demographic distributions. Evaluating various LLMs with our proposed metric reveals that model bias varies depending on the criteria used, highlighting the need for multi-perspective assessment.
Abstract:Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Abstract:Gloss-free Sign Language Translation (SLT) converts sign videos directly into spoken language sentences without relying on glosses. Recently, Large Language Models (LLMs) have shown remarkable translation performance in gloss-free methods by harnessing their powerful natural language generation capabilities. However, these methods often rely on domain-specific fine-tuning of visual encoders to achieve optimal results. By contrast, this paper emphasizes the importance of capturing the spatial configurations and motion dynamics inherent in sign language. With this in mind, we introduce Spatial and Motion-based Sign Language Translation (SpaMo), a novel LLM-based SLT framework. The core idea of SpaMo is simple yet effective. We first extract spatial and motion features using off-the-shelf visual encoders and then input these features into an LLM with a language prompt. Additionally, we employ a visual-text alignment process as a warm-up before the SLT supervision. Our experiments demonstrate that SpaMo achieves state-of-the-art performance on two popular datasets, PHOENIX14T and How2Sign.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly improved their performance across various Natural Language Processing (NLP) tasks. However, LLMs still struggle with generating non-factual responses due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) systems address this issue by incorporating external knowledge with a retrieval module. Despite their successes, however, current RAG systems face challenges with retrieval failures and the limited ability of LLMs to filter out irrelevant information. Therefore, in this work, we propose \textit{\textbf{DSLR}} (\textbf{D}ocument Refinement with \textbf{S}entence-\textbf{L}evel \textbf{R}e-ranking and Reconstruction), an unsupervised framework that decomposes retrieved documents into sentences, filters out irrelevant sentences, and reconstructs them again into coherent passages. We experimentally validate \textit{DSLR} on multiple open-domain QA datasets and the results demonstrate that \textit{DSLR} significantly enhances the RAG performance over conventional fixed-size passage. Furthermore, our \textit{DSLR} enhances performance in specific, yet realistic scenarios without the need for additional training, providing an effective and efficient solution for refining retrieved documents in RAG systems.
Abstract:Sign language, essential for the deaf and hard-of-hearing, presents unique challenges in translation and production due to its multimodal nature and the inherent ambiguity in mapping sign language motion to spoken language words. Previous methods often rely on gloss annotations, requiring time-intensive labor and specialized expertise in sign language. Gloss-free methods have emerged to address these limitations, but they often depend on external sign language data or dictionaries, failing to completely eliminate the need for gloss annotations. There is a clear demand for a comprehensive approach that can supplant gloss annotations and be utilized for both Sign Language Translation (SLT) and Sign Language Production (SLP). We introduce Universal Gloss-level Representation (UniGloR), a unified and self-supervised solution for both SLT and SLP, trained on multiple datasets including PHOENIX14T, How2Sign, and NIASL2021. Our results demonstrate UniGloR's effectiveness in the translation and production tasks. We further report an encouraging result for the Sign Language Recognition (SLR) on previously unseen data. Our study suggests that self-supervised learning can be made in a unified manner, paving the way for innovative and practical applications in future research.
Abstract:Information retrieval models that aim to search for the documents relevant to the given query have shown many successes, which have been applied to diverse tasks. However, the query provided by the user is oftentimes very short, which challenges the retrievers to correctly fetch relevant documents. To tackle this, existing studies have proposed expanding the query with a couple of additional (user-related) features related to the query. Yet, they may be suboptimal to effectively augment the query, though there is plenty of information available to augment it in a relational database. Motivated by this, we present a novel retrieval framework called Database-Augmented Query representation (DAQu), which augments the original query with various (query-related) metadata across multiple tables. In addition, as the number of features in the metadata can be very large and there is no order among them, we encode them with our graph-based set encoding strategy, which considers hierarchies of features in the database without order. We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database, demonstrating that ours significantly enhances overall retrieval performance, compared to existing query augmentation methods.
Abstract:Recent language models have shown remarkable performance on natural language understanding (NLU) tasks. However, they are often sub-optimal when faced with ambiguous samples that can be interpreted in multiple ways, over-confidently predicting a single label without consideration for its correctness. To address this issue, we propose a novel self-knowledge distillation method that enables models to learn label distributions more accurately by leveraging knowledge distilled from their lower layers. This approach also includes a learning phase that re-calibrates the unnecessarily strengthened confidence for training samples judged as extremely ambiguous based on the distilled distribution knowledge. We validate our method on diverse NLU benchmark datasets and the experimental results demonstrate its effectiveness in producing better label distributions. Particularly, through the process of re-calibrating the confidence for highly ambiguous samples, the issue of over-confidence when predictions for unseen samples do not match with their ground-truth labels has been significantly alleviated. This has been shown to contribute to generating better distributions than the existing state-of-the-art method. Moreover, our method is more efficient in training the models compared to the existing method, as it does not involve additional training processes to refine label distributions.
Abstract:Social bias is shaped by the accumulation of social perceptions towards targets across various demographic identities. To fully understand such social bias in large language models (LLMs), it is essential to consider the composite of social perceptions from diverse perspectives among identities. Previous studies have either evaluated biases in LLMs by indirectly assessing the presence of sentiments towards demographic identities in the generated text or measuring the degree of alignment with given stereotypes. These methods have limitations in directly quantifying social biases at the level of distinct perspectives among identities. In this paper, we aim to investigate how social perceptions from various viewpoints contribute to the development of social bias in LLMs. To this end, we propose a novel strategy to intuitively quantify these social perceptions and suggest metrics that can evaluate the social biases within LLMs by aggregating diverse social perceptions. The experimental results show the quantitative demonstration of the social attitude in LLMs by examining social perception. The analysis we conducted shows that our proposed metrics capture the multi-dimensional aspects of social bias, enabling a fine-grained and comprehensive investigation of bias in LLMs.