Abstract:In a highly globalized world, it is important for multi-modal large language models (MLLMs) to recognize and respond correctly to mixed-cultural inputs. For example, a model should correctly identify kimchi (Korean food) in an image both when an Asian woman is eating it, as well as an African man is eating it. However, current MLLMs show an over-reliance on the visual features of the person, leading to misclassification of the entities. To examine the robustness of MLLMs to different ethnicity, we introduce MixCuBe, a cross-cultural bias benchmark, and study elements from five countries and four ethnicities. Our findings reveal that MLLMs achieve both higher accuracy and lower sensitivity to such perturbation for high-resource cultures, but not for low-resource cultures. GPT-4o, the best-performing model overall, shows up to 58% difference in accuracy between the original and perturbed cultural settings in low-resource cultures. Our dataset is publicly available at: https://huggingface.co/datasets/kyawyethu/MixCuBe.
Abstract:Content moderation is a global challenge, yet major tech platforms prioritize high-resource languages, leaving low-resource languages with scarce native moderators. Since effective moderation depends on understanding contextual cues, this imbalance increases the risk of improper moderation due to non-native moderators' limited cultural understanding. Through a user study, we identify that non-native moderators struggle with interpreting culturally-specific knowledge, sentiment, and internet culture in the hate speech moderation. To assist them, we present LLM-C3MOD, a human-LLM collaborative pipeline with three steps: (1) RAG-enhanced cultural context annotations; (2) initial LLM-based moderation; and (3) targeted human moderation for cases lacking LLM consensus. Evaluated on a Korean hate speech dataset with Indonesian and German participants, our system achieves 78% accuracy (surpassing GPT-4o's 71% baseline), while reducing human workload by 83.6%. Notably, human moderators excel at nuanced contents where LLMs struggle. Our findings suggest that non-native moderators, when properly supported by LLMs, can effectively contribute to cross-cultural hate speech moderation.
Abstract:Text-to-image diffusion models have recently enabled the creation of visually compelling, detailed images from textual prompts. However, their ability to accurately represent various cultural nuances remains an open question. In our work, we introduce CultDiff benchmark, evaluating state-of-the-art diffusion models whether they can generate culturally specific images spanning ten countries. We show that these models often fail to generate cultural artifacts in architecture, clothing, and food, especially for underrepresented country regions, by conducting a fine-grained analysis of different similarity aspects, revealing significant disparities in cultural relevance, description fidelity, and realism compared to real-world reference images. With the collected human evaluations, we develop a neural-based image-image similarity metric, namely, CultDiff-S, to predict human judgment on real and generated images with cultural artifacts. Our work highlights the need for more inclusive generative AI systems and equitable dataset representation over a wide range of cultures.
Abstract:Significant advances have been made in developing general-purpose embodied AI in environments like Minecraft through the adoption of LLM-augmented hierarchical approaches. While these approaches, which combine high-level planners with low-level controllers, show promise, low-level controllers frequently become performance bottlenecks due to repeated failures. In this paper, we argue that the primary cause of failure in many low-level controllers is the absence of an episodic memory system. To address this, we introduce Mr. Steve (Memory Recall Steve-1), a novel low-level controller equipped with Place Event Memory (PEM), a form of episodic memory that captures what, where, and when information from episodes. This directly addresses the main limitation of the popular low-level controller, Steve-1. Unlike previous models that rely on short-term memory, PEM organizes spatial and event-based data, enabling efficient recall and navigation in long-horizon tasks. Additionally, we propose an Exploration Strategy and a Memory-Augmented Task Solving Framework, allowing agents to alternate between exploration and task-solving based on recalled events. Our approach significantly improves task-solving and exploration efficiency compared to existing methods. We will release our code and demos on the project page: https://sites.google.com/view/mr-steve.
Abstract:Large-scale deployment of large language models (LLMs) in various applications, such as chatbots and virtual assistants, requires LLMs to be culturally sensitive to the user to ensure inclusivity. Culture has been widely studied in psychology and anthropology, and there has been a recent surge in research on making LLMs more culturally inclusive in LLMs that goes beyond multilinguality and builds on findings from psychology and anthropology. In this paper, we survey efforts towards incorporating cultural awareness into text-based and multimodal LLMs. We start by defining cultural awareness in LLMs, taking the definitions of culture from anthropology and psychology as a point of departure. We then examine methodologies adopted for creating cross-cultural datasets, strategies for cultural inclusion in downstream tasks, and methodologies that have been used for benchmarking cultural awareness in LLMs. Further, we discuss the ethical implications of cultural alignment, the role of Human-Computer Interaction in driving cultural inclusion in LLMs, and the role of cultural alignment in driving social science research. We finally provide pointers to future research based on our findings about gaps in the literature.
Abstract:Systematic compositionality, or the ability to adapt to novel situations by creating a mental model of the world using reusable pieces of knowledge, remains a significant challenge in machine learning. While there has been considerable progress in the language domain, efforts towards systematic visual imagination, or envisioning the dynamical implications of a visual observation, are in their infancy. We introduce the Systematic Visual Imagination Benchmark (SVIB), the first benchmark designed to address this problem head-on. SVIB offers a novel framework for a minimal world modeling problem, where models are evaluated based on their ability to generate one-step image-to-image transformations under a latent world dynamics. The framework provides benefits such as the possibility to jointly optimize for systematic perception and imagination, a range of difficulty levels, and the ability to control the fraction of possible factor combinations used during training. We provide a comprehensive evaluation of various baseline models on SVIB, offering insight into the current state-of-the-art in systematic visual imagination. We hope that this benchmark will help advance visual systematic compositionality.
Abstract:World models are a fundamental component in model-based reinforcement learning (MBRL) agents. To perform temporally extended and consistent simulations of the future in partially observable environments, world models need to possess long-term memory. However, state-of-the-art MBRL agents, such as Dreamer, predominantly employ recurrent neural networks (RNNs) as their world model backbone, which have limited memory capacity. In this paper, we seek to explore alternative world model backbones for improving long-term memory. In particular, we investigate the effectiveness of Transformers and Structured State Space Sequence (S4) models, motivated by their remarkable ability to capture long-range dependencies in low-dimensional sequences and their complementary strengths. We propose S4WM, the first S4-based world model that can generate high-dimensional image sequences through latent imagination. Furthermore, we extensively compare RNN-, Transformer-, and S4-based world models across four sets of environments, which we have specifically tailored to assess crucial memory capabilities of world models, including long-term imagination, context-dependent recall, reward prediction, and memory-based reasoning. Our findings demonstrate that S4WM outperforms Transformer-based world models in terms of long-term memory, while exhibiting greater efficiency during training and imagination. These results pave the way for the development of stronger MBRL agents.