Abstract:Large-scale deployment of large language models (LLMs) in various applications, such as chatbots and virtual assistants, requires LLMs to be culturally sensitive to the user to ensure inclusivity. Culture has been widely studied in psychology and anthropology, and there has been a recent surge in research on making LLMs more culturally inclusive in LLMs that goes beyond multilinguality and builds on findings from psychology and anthropology. In this paper, we survey efforts towards incorporating cultural awareness into text-based and multimodal LLMs. We start by defining cultural awareness in LLMs, taking the definitions of culture from anthropology and psychology as a point of departure. We then examine methodologies adopted for creating cross-cultural datasets, strategies for cultural inclusion in downstream tasks, and methodologies that have been used for benchmarking cultural awareness in LLMs. Further, we discuss the ethical implications of cultural alignment, the role of Human-Computer Interaction in driving cultural inclusion in LLMs, and the role of cultural alignment in driving social science research. We finally provide pointers to future research based on our findings about gaps in the literature.
Abstract:How frequently do individuals thoroughly review terms and conditions before proceeding to register for a service, install software, or access a website? The majority of internet users do not engage in this practice. This trend is not surprising, given that terms and conditions typically consist of lengthy documents replete with intricate legal terminology and convoluted sentences. In this paper, we introduce a Machine Learning-powered approach designed to automatically parse and summarize critical information in a user-friendly manner. This technology focuses on distilling the pertinent details that users should contemplate before committing to an agreement.
Abstract:Prepositions are frequently occurring polysemous words. Disambiguation of prepositions is crucial in tasks like semantic role labelling, question answering, text entailment, and noun compound paraphrasing. In this paper, we propose a novel methodology for preposition sense disambiguation (PSD), which does not use any linguistic tools. In a supervised setting, the machine learning model is presented with sentences wherein prepositions have been annotated with senses. These senses are IDs in what is called The Preposition Project (TPP). We use the hidden layer representations from pre-trained BERT and BERT variants. The latent representations are then classified into the correct sense ID using a Multi Layer Perceptron. The dataset used for this task is from SemEval-2007 Task-6. Our methodology gives an accuracy of 86.85% which is better than the state-of-the-art.