Abstract:In a highly globalized world, it is important for multi-modal large language models (MLLMs) to recognize and respond correctly to mixed-cultural inputs. For example, a model should correctly identify kimchi (Korean food) in an image both when an Asian woman is eating it, as well as an African man is eating it. However, current MLLMs show an over-reliance on the visual features of the person, leading to misclassification of the entities. To examine the robustness of MLLMs to different ethnicity, we introduce MixCuBe, a cross-cultural bias benchmark, and study elements from five countries and four ethnicities. Our findings reveal that MLLMs achieve both higher accuracy and lower sensitivity to such perturbation for high-resource cultures, but not for low-resource cultures. GPT-4o, the best-performing model overall, shows up to 58% difference in accuracy between the original and perturbed cultural settings in low-resource cultures. Our dataset is publicly available at: https://huggingface.co/datasets/kyawyethu/MixCuBe.
Abstract:Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
Abstract:Text-to-image diffusion models have recently enabled the creation of visually compelling, detailed images from textual prompts. However, their ability to accurately represent various cultural nuances remains an open question. In our work, we introduce CultDiff benchmark, evaluating state-of-the-art diffusion models whether they can generate culturally specific images spanning ten countries. We show that these models often fail to generate cultural artifacts in architecture, clothing, and food, especially for underrepresented country regions, by conducting a fine-grained analysis of different similarity aspects, revealing significant disparities in cultural relevance, description fidelity, and realism compared to real-world reference images. With the collected human evaluations, we develop a neural-based image-image similarity metric, namely, CultDiff-S, to predict human judgment on real and generated images with cultural artifacts. Our work highlights the need for more inclusive generative AI systems and equitable dataset representation over a wide range of cultures.
Abstract:Contrastive Language-Image Pretraining (CLIP) enables zero-shot inference in downstream tasks such as image-text retrieval and classification. However, recent works extending CLIP suffer from the issue of modality gap, which arises when the image and text embeddings are projected to disparate manifolds, deviating from the intended objective of image-text contrastive learning. We discover that this phenomenon is linked to the modality-specific characteristic that each image/text encoder independently possesses and propose two methods to address the modality gap: (1) a post-hoc embedding standardization method, $\text{I0T}_{\text{post}}$ that reduces the modality gap approximately to zero and (2) a trainable method, $\text{I0T}_{\text{async}}$, to alleviate the modality gap problem by adding two normalization layers for each encoder. Our I0T framework can significantly reduce the modality gap while preserving the original embedding representations of trained models with their locked parameters. In practice, $\text{I0T}_{\text{post}}$ can serve as an alternative explainable automatic evaluation metric of widely used CLIPScore (CLIP-S).
Abstract:Stable pre-training is essential for achieving better-performing language models. However, tracking pre-training stability by calculating gradient variance at every step is impractical due to the significant computational costs. We explore Token Embedding Variability (TEV) as a simple and efficient proxy for assessing pre-training stability in language models with pre-layer normalization, given that shallower layers are more prone to gradient explosion (section 2.2). Moreover, we propose Multi-head Low-Rank Attention (MLRA) as an architecture to alleviate such instability by limiting the exponential growth of output embedding variance, thereby preventing the gradient explosion (section 3.2). Empirical results on GPT-2 with MLRA demonstrate increased stability and lower perplexity, particularly in deeper models.
Abstract:Large Language Models (LLMs) have shown stellar achievements in solving a broad range of tasks. When generating text, it is common to sample tokens from these models: whether LLMs closely align with the human disagreement distribution has not been well-studied, especially within the scope of Natural Language Inference (NLI). In this paper, we evaluate the performance and alignment of LLM distribution with humans using two different techniques: Monte Carlo Reconstruction (MCR) and Log Probability Reconstruction (LPR). As a result, we show LLMs exhibit limited ability in solving NLI tasks and simultaneously fail to capture human disagreement distribution, raising concerns about their natural language understanding (NLU) ability and their representativeness of human users.