Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
Abstract:How can we accurately classify graphs? Graph classification is a pivotal task in data mining with applications in social network analysis, web analysis, drug discovery, molecular property prediction, etc. Graph neural networks have achieved the state-of-the-art performance in graph classification, but they consistently struggle with overfitting. To mitigate overfitting, researchers have introduced various representation learning methods utilizing graph augmentation. However, existing methods rely on simplistic use of graph augmentation, which loses augmentation-induced differences and limits the expressiveness of representations. In this paper, we propose AugWard (Augmentation-Aware Training with Graph Distance and Consistency Regularization), a novel graph representation learning framework that carefully considers the diversity introduced by graph augmentation. AugWard applies augmentation-aware training to predict the graph distance between the augmented graph and its original one, aligning the representation difference directly with graph distance at both feature and structure levels. Furthermore, AugWard employs consistency regularization to encourage the classifier to handle richer representations. Experimental results show that AugWard gives the state-of-the-art performance in supervised, semi-supervised graph classification, and transfer learning.
Abstract:Spiking Neural Networks (SNNs) present a more energy-efficient alternative to Artificial Neural Networks (ANNs) by harnessing spatio-temporal dynamics and event-driven spikes. Effective utilization of temporal information is crucial for SNNs, leading to the exploration of attention mechanisms to enhance this capability. Conventional attention operations either apply identical operation or employ non-identical operations across target dimensions. We identify that these approaches provide distinct perspectives on temporal information. To leverage the strengths of both operations, we propose a novel Dual Temporal-channel-wise Attention (DTA) mechanism that integrates both identical/non-identical attention strategies. To the best of our knowledge, this is the first attempt to concentrate on both the correlation and dependency of temporal-channel using both identical and non-identical attention operations. Experimental results demonstrate that the DTA mechanism achieves state-of-the-art performance on both static datasets (CIFAR10, CIFAR100, ImageNet-1k) and dynamic dataset (CIFAR10-DVS), elevating spike representation and capturing complex temporal-channel relationship. We open-source our code: https://github.com/MnJnKIM/DTA-SNN.
Abstract:$\chi$-separation is an advanced quantitative susceptibility mapping (QSM) method that is designed to generate paramagnetic ($\chi_{para}$) and diamagnetic ($|\chi_{dia}|$) susceptibility maps, reflecting the distribution of iron and myelin in the brain. However, vessels have shown artifacts, interfering with the accurate quantification of iron and myelin in applications. To address this challenge, a new vessel segmentation method for $\chi$-separation is developed. The method comprises three steps: 1) Seed generation from $\textit{R}_2^*$ and the product of $\chi_{para}$ and $|\chi_{dia}|$ maps; 2) Region growing, guided by vessel geometry, creating a vessel mask; 3) Refinement of the vessel mask by excluding non-vessel structures. The performance of the method was compared to conventional vessel segmentation methods both qualitatively and quantitatively. To demonstrate the utility of the method, it was tested in two applications: quantitative evaluation of a neural network-based $\chi$-separation reconstruction method ($\chi$-sepnet-$\textit{R}_2^*$) and population-averaged region of interest (ROI) analysis. The proposed method demonstrates superior performance to the conventional vessel segmentation methods, effectively excluding the non-vessel structures, achieving the highest Dice score coefficient. For the applications, applying vessel masks report notable improvements for the quantitative evaluation of $\chi$-sepnet-$\textit{R}_2^*$ and statistically significant differences in population-averaged ROI analysis. These applications suggest excluding vessels when analyzing the $\chi$-separation maps provide more accurate evaluations. The proposed method has the potential to facilitate various applications, offering reliable analysis through the generation of a high-quality vessel mask.
Abstract:Generative models trained on multi-institutional datasets can provide an enriched understanding through diverse data distributions. However, training the models on medical images is often challenging due to hospitals' reluctance to share data for privacy reasons. Federated learning(FL) has emerged as a privacy-preserving solution for training distributed datasets across data centers by aggregating model weights from multiple clients instead of sharing raw data. Previous research has explored the adaptation of FL to generative models, yet effective aggregation algorithms specifically tailored for generative models remain unexplored. We hereby propose a novel algorithm aimed at improving the performance of generative models within FL. Our approach adaptively re-weights the contribution of each client, resulting in well-trained shared parameters. In each round, the server side measures the distribution distance between fake images generated by clients instead of directly comparing the Fr\'echet Inception Distance per client, thereby enhancing efficiency of the learning. Experimental results on three public chest X-ray datasets show superior performance in medical image generation, outperforming both centralized learning and conventional FL algorithms. Our code is available at https://github.com/danny0628/FedCAR.
Abstract:We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
Abstract:Magnetic susceptibility source separation ($\chi$-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of para- and diamagnetic susceptibility source distributions in the brain. The method utilizes reversible transverse relaxation (R2'=R2*-R2) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for R2 in addition R2*. To address this challenge, we develop a new deep learning network, $\chi$-sepnet, and propose two deep learning-based susceptibility source separation pipelines, $\chi$-sepnet-R2' for inputs with multi-echo GRE and multi-echo spin-echo, and $\chi$-sepnet-R2* for input with multi-echo GRE only. $\chi$-sepnet is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality $\chi$-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from conventional regularization-based reconstruction methods. In quantitative analysis, $\chi$-sepnet-R2' achieves the best outcomes followed by $\chi$-sepnet-R2*, outperforming the conventional methods. When the lesions of multiple sclerosis patients are assessed, both pipelines report identical lesion characteristics in most lesions ($\chi$para: 99.6% and $\chi$dia: 98.4% out of 250 lesions). The $\chi$-sepnet-R2* pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
Abstract:Synthetic aperture radar technology is crucial for high-resolution imaging under various conditions; however, the acquisition of real-world synthetic aperture radar data for deep learning-based automatic target recognition remains challenging due to high costs and data availability issues. To overcome these challenges, synthetic data generated through simulations have been employed, although discrepancies between synthetic and real data can degrade model performance. In this study, we introduce a novel framework, soft segmented randomization, designed to reduce domain discrepancy and improve the generalize ability of synthetic aperture radar automatic target recognition models. The soft segmented randomization framework applies a Gaussian mixture model to segment target and clutter regions softly, introducing randomized variations that align the synthetic data's statistical properties more closely with those of real-world data. Experimental results demonstrate that the proposed soft segmented randomization framework significantly enhances model performance on measured synthetic aperture radar data, making it a promising approach for robust automatic target recognition in scenarios with limited or no access to measured data.
Abstract:The impressive development of large language models (LLMs) is expanding into the realm of large multimodal models (LMMs), which incorporate multiple types of data beyond text. However, the nature of multimodal models leads to significant expenses in the creation of training data. Furthermore, constructing multilingual data for LMMs presents its own set of challenges due to language diversity and complexity. Therefore, in this study, we propose two cost-effective methods to solve this problem: (1) vocabulary expansion and pretraining of multilingual LLM for specific languages, and (2) automatic and elaborate construction of multimodal datasets using GPT4-V. Based on015 these methods, we constructed a 91K English-Korean-Chinese multilingual, multimodal training dataset. Additionally, we developed a bilingual multimodal model that exhibits excellent performance in both Korean and English, surpassing existing approaches.
Abstract:The current research direction in generative models, such as the recently developed GPT4, aims to find relevant knowledge information for multimodal and multilingual inputs to provide answers. Under these research circumstances, the demand for multilingual evaluation of visual question answering (VQA) tasks, a representative task of multimodal systems, has increased. Accordingly, we propose a bilingual outside-knowledge VQA (BOK-VQA) dataset in this study that can be extended to multilingualism. The proposed data include 17K images, 17K question-answer pairs for both Korean and English and 280K instances of knowledge information related to question-answer content. We also present a framework that can effectively inject knowledge information into a VQA system by pretraining the knowledge information of BOK-VQA data in the form of graph embeddings. Finally, through in-depth analysis, we demonstrated the actual effect of the knowledge information contained in the constructed training data on VQA.
Abstract:Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as chi-separation, has been proposed successfully disentangling paramagnetic iron from diamagnetic myelin, opening a new potential for generating iron map and myelin map in the brain. Utilizing this technique, this study constructs a normative chi-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.