Abstract:Low-rank adaption (LoRA) is a prominent method that adds a small number of learnable parameters to the frozen pre-trained weights for parameter-efficient fine-tuning. Prompted by the question, ``Can we make its representation enough with LoRA weights solely at the final phase of finetuning without the pre-trained weights?'' In this work, we introduce Progressive Compression LoRA~(PC-LoRA), which utilizes low-rank adaptation (LoRA) to simultaneously perform model compression and fine-tuning. The PC-LoRA method gradually removes the pre-trained weights during the training process, eventually leaving only the low-rank adapters in the end. Thus, these low-rank adapters replace the whole pre-trained weights, achieving the goals of compression and fine-tuning at the same time. Empirical analysis across various models demonstrates that PC-LoRA achieves parameter and FLOPs compression rates of 94.36%/89.1% for vision models, e.g., ViT-B, and 93.42%/84.2% parameters and FLOPs compressions for language models, e.g., BERT.
Abstract:In this paper, WALK-VIO, a novel visual-inertial odometry (VIO) with walking-motion-adaptive leg kinematic constraints that change with body motion for localization of quadruped robots, is proposed. Quadruped robots primarily use VIO because they require fast localization for control and path planning. However, since quadruped robots are mainly used outdoors, extraneous features extracted from the sky or ground cause tracking failures. In addition, the quadruped robots' walking motion cause wobbling, which lowers the localization accuracy due to the camera and inertial measurement unit (IMU). To overcome these limitations, many researchers use VIO with leg kinematic constraints. However, since the quadruped robot's walking motion varies according to the controller, gait, quadruped robots' velocity, and so on, these factors should be considered in the process of adding leg kinematic constraints. We propose VIO that can be used regardless of walking motion by adjusting the leg kinematic constraint factor. In order to evaluate WALK-VIO, we create and publish datasets of quadruped robots that move with various types of walking motion in a simulation environment. In addition, we verified the validity of WALK-VIO through comparison with current state-of-the-art algorithms.