Abstract:We introduce a new framework, dubbed Cerberus, for attribute-based person re-identification (reID). Our approach leverages person attribute labels to learn local and global person representations that encode specific traits, such as gender and clothing style. To achieve this, we define semantic IDs (SIDs) by combining attribute labels, and use a semantic guidance loss to align the person representations with the prototypical features of corresponding SIDs, encouraging the representations to encode the relevant semantics. Simultaneously, we enforce the representations of the same person to be embedded closely, enabling recognizing subtle differences in appearance to discriminate persons sharing the same attribute labels. To increase the generalization ability on unseen data, we also propose a regularization method that takes advantage of the relationships between SID prototypes. Our framework performs individual comparisons of local and global person representations between query and gallery images for attribute-based reID. By exploiting the SID prototypes aligned with the corresponding representations, it can also perform person attribute recognition (PAR) and attribute-based person search (APS) without bells and whistles. Experimental results on standard benchmarks on attribute-based person reID, Market-1501 and DukeMTMC, demonstrate the superiority of our model compared to the state of the art.
Abstract:Domain adaptation for object detection typically entails transferring knowledge from one visible domain to another visible domain. However, there are limited studies on adapting from the visible to the thermal domain, because the domain gap between the visible and thermal domains is much larger than expected, and traditional domain adaptation can not successfully facilitate learning in this situation. To overcome this challenge, we propose a Distinctive Dual-Domain Teacher (D3T) framework that employs distinct training paradigms for each domain. Specifically, we segregate the source and target training sets for building dual-teachers and successively deploy exponential moving average to the student model to individual teachers of each domain. The framework further incorporates a zigzag learning method between dual teachers, facilitating a gradual transition from the visible to thermal domains during training. We validate the superiority of our method through newly designed experimental protocols with well-known thermal datasets, i.e., FLIR and KAIST. Source code is available at https://github.com/EdwardDo69/D3T .