Tokyo Institute of Technology
Abstract:Handling lengthy context is crucial for enhancing the recognition and understanding capabilities of multimodal large language models (MLLMs) in applications such as processing high-resolution images or high frame rate videos. The rise in image resolution and frame rate substantially increases computational demands due to the increased number of input tokens. This challenge is further exacerbated by the quadratic complexity with respect to sequence length of the self-attention mechanism. Most prior works either pre-train models with long contexts, overlooking the efficiency problem, or attempt to reduce the context length via downsampling (e.g., identify the key image patches or frames) to decrease the context length, which may result in information loss. To circumvent this issue while keeping the remarkable effectiveness of MLLMs, we propose a novel approach using a hybrid transformer-MAMBA model to efficiently handle long contexts in multimodal applications. Our multimodal model can effectively process long context input exceeding 100k tokens, outperforming existing models across various benchmarks. Remarkably, our model enhances inference efficiency for high-resolution images and high-frame-rate videos by about 4 times compared to current models, with efficiency gains increasing as image resolution or video frames rise. Furthermore, our model is the first to be trained on low-resolution images or low-frame-rate videos while being capable of inference on high-resolution images and high-frame-rate videos, offering flexibility for inference in diverse scenarios.
Abstract:Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks. However, fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, mitigate this issue by adjusting only a small subset of parameters. Nevertheless, these methods typically employ random initialization for low-rank matrices, which can lead to inefficiencies in gradient descent and diminished generalizability due to suboptimal starting points. To address these limitations, we propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to initialize low-rank matrices using critical singular values as trainable parameters. Specifically, SVFit performs SVD on the pre-trained weight matrix to obtain the best rank-r approximation matrix, emphasizing the most critical singular values that capture over 99% of the matrix's information. These top-r singular values are then used as trainable parameters to scale the fundamental subspaces of the matrix, facilitating rapid domain adaptation. Extensive experiments across various pre-trained models in natural language understanding, text-to-image generation, and image classification tasks reveal that SVFit outperforms LoRA while requiring 16 times fewer trainable parameters.
Abstract:A timeline provides a total ordering of events and times, and is useful for a number of natural language understanding tasks. However, qualitative temporal graphs that can be derived directly from text -- such as TimeML annotations -- usually explicitly reveal only partial orderings of events and times. In this work, we apply prior work on solving point algebra problems to the task of extracting timelines from TimeML annotated texts, and develop an exact, end-to-end solution which we call TLEX (TimeLine EXtraction). TLEX transforms TimeML annotations into a collection of timelines arranged in a trunk-and-branch structure. Like what has been done in prior work, TLEX checks the consistency of the temporal graph and solves it; however, it adds two novel functionalities. First, it identifies specific relations involved in an inconsistency (which could then be manually corrected) and, second, TLEX performs a novel identification of sections of the timelines that have indeterminate order, information critical for downstream tasks such as aligning events from different timelines. We provide detailed descriptions and analysis of the algorithmic components in TLEX, and conduct experimental evaluations by applying TLEX to 385 TimeML annotated texts from four corpora. We show that 123 of the texts are inconsistent, 181 of them have more than one ``real world'' or main timeline, and there are 2,541 indeterminate sections across all four corpora. A sampling evaluation showed that TLEX is 98--100% accurate with 95% confidence along five dimensions: the ordering of time-points, the number of main timelines, the placement of time-points on main versus subordinate timelines, the connecting point of branch timelines, and the location of the indeterminate sections. We provide a reference implementation of TLEX, the extracted timelines for all texts, and the manual corrections of the inconsistent texts.
Abstract:Despite the subjective nature of semantic textual similarity (STS) and pervasive disagreements in STS annotation, existing benchmarks have used averaged human ratings as the gold standard. Averaging masks the true distribution of human opinions on examples of low agreement, and prevents models from capturing the semantic vagueness that the individual ratings represent. In this work, we introduce USTS, the first Uncertainty-aware STS dataset with ~15,000 Chinese sentence pairs and 150,000 labels, to study collective human opinions in STS. Analysis reveals that neither a scalar nor a single Gaussian fits a set of observed judgements adequately. We further show that current STS models cannot capture the variance caused by human disagreement on individual instances, but rather reflect the predictive confidence over the aggregate dataset.
Abstract:3D cross-modal retrieval is gaining attention in the multimedia community. Central to this topic is learning a joint embedding space to represent data from different modalities, such as images, 3D point clouds, and polygon meshes, to extract modality-invariant and discriminative features. Hence, the performance of cross-modal retrieval methods heavily depends on the representational capacity of this embedding space. Existing methods treat all instances equally, applying the same penalty strength to instances with varying degrees of difficulty, ignoring the differences between instances. This can result in ambiguous convergence or local optima, severely compromising the separability of the feature space. To address this limitation, we propose an Instance-Variant loss to assign different penalty strengths to different instances, improving the space separability. Specifically, we assign different penalty weights to instances positively related to their intra-class distance. Simultaneously, we reduce the cross-modal discrepancy between features by learning a shared weight vector for the same class data from different modalities. By leveraging the Gaussian RBF kernel to evaluate sample similarity, we further propose an Intra-Class loss function that minimizes the intra-class distance among same-class instances. Extensive experiments on three 3D cross-modal datasets show that our proposed method surpasses recent state-of-the-art approaches.
Abstract:With the ever-widening spread of the Internet of Things (IoT) and Edge Computing paradigms, centralized Machine and Deep Learning (ML/DL) have become challenging due to existing distributed data silos containing sensitive information. The rising concern for data privacy is promoting the development of collaborative and privacy-preserving ML/DL techniques such as Federated Learning (FL). FL enables data privacy by design since the local data of participants are not exposed during the creation of the global and collaborative model. However, data privacy and performance are no longer sufficient, and there is a real necessity to trust model predictions. The literature has proposed some works on trustworthy ML/DL (without data privacy), where robustness, fairness, explainability, and accountability are identified as relevant pillars. However, more efforts are needed to identify trustworthiness pillars and evaluation metrics relevant to FL models and to create solutions computing the trustworthiness level of FL models. Thus, this work analyzes the existing requirements for trustworthiness evaluation in FL and proposes a comprehensive taxonomy of six pillars (privacy, robustness, fairness, explainability, accountability, and federation) with notions and more than 30 metrics for computing the trustworthiness of FL models. Then, an algorithm called FederatedTrust has been designed according to the pillars and metrics identified in the previous taxonomy to compute the trustworthiness score of FL models. A prototype of FederatedTrust has been implemented and deployed into the learning process of FederatedScope, a well-known FL framework. Finally, four experiments performed with different configurations of FederatedScope using the FEMNIST dataset under different federation configurations demonstrated the usefulness of FederatedTrust when computing the trustworthiness of FL models.
Abstract:Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively correlated sets. DPPs have been successfully employed in Machine Learning applications to select a diverse, yet representative subset of data. In seminal work on DPPs in Machine Learning, Kulesza conjectured in his PhD Thesis (2011) that the problem of finding a maximum likelihood DPP model for a given data set is NP-complete. In this work we prove Kulesza's conjecture. In fact, we prove the following stronger hardness of approximation result: even computing a $\left(1-O(\frac{1}{\log^9{N}})\right)$-approximation to the maximum log-likelihood of a DPP on a ground set of $N$ elements is NP-complete. At the same time, we also obtain the first polynomial-time algorithm that achieves a nontrivial worst-case approximation to the optimal log-likelihood: the approximation factor is $\frac{1}{(1+o(1))\log{m}}$ unconditionally (for data sets that consist of $m$ subsets), and can be improved to $1-\frac{1+o(1)}{\log N}$ if all $N$ elements appear in a $O(1/N)$-fraction of the subsets. In terms of techniques, we reduce approximating the maximum log-likelihood of DPPs on a data set to solving a gap instance of a "vector coloring" problem on a hypergraph. Such a hypergraph is built on a bounded-degree graph construction of Bogdanov, Obata and Trevisan (FOCS 2002), and is further enhanced by the strong expanders of Alon and Capalbo (FOCS 2007) to serve our purposes.
Abstract:Modern Web systems such as social media and e-commerce contain rich contents expressed in images and text. Leveraging information from multi-modalities can improve the performance of machine learning tasks such as classification and recommendation. In this paper, we propose the Cross-Modality Attention Contrastive Language-Image Pre-training (CMA-CLIP), a new framework which unifies two types of cross-modality attentions, sequence-wise attention and modality-wise attention, to effectively fuse information from image and text pairs. The sequence-wise attention enables the framework to capture the fine-grained relationship between image patches and text tokens, while the modality-wise attention weighs each modality by its relevance to the downstream tasks. In addition, by adding task specific modality-wise attentions and multilayer perceptrons, our proposed framework is capable of performing multi-task classification with multi-modalities. We conduct experiments on a Major Retail Website Product Attribute (MRWPA) dataset and two public datasets, Food101 and Fashion-Gen. The results show that CMA-CLIP outperforms the pre-trained and fine-tuned CLIP by an average of 11.9% in recall at the same level of precision on the MRWPA dataset for multi-task classification. It also surpasses the state-of-the-art method on Fashion-Gen Dataset by 5.5% in accuracy and achieves competitive performance on Food101 Dataset. Through detailed ablation studies, we further demonstrate the effectiveness of both cross-modality attention modules and our method's robustness against noise in image and text inputs, which is a common challenge in practice.
Abstract:The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.
Abstract:Human motion is a key function to communicate information. In the application, short-form mobile video is so popular all over the world such as Tik Tok. The users would like to add more VFX so as to pursue creativity and personlity. Many special effects are added on the short video platform. These gives the users more possibility to show off these personality. The common and traditional way is to create the template of VFX. However, in order to synthesis the perfect, the users have to tedious attempt to grasp the timing and rhythm of new templates. It is not easy-to-use especially for the mobile app. This paper aims to change the VFX synthesis by motion driven instead of the traditional template matching. We propose the AI method to improve this VFX synthesis. In detail, in order to add the special effect on the human body. The skeleton extraction is essential in this system. We also propose a novel form of LSTM to find out the user's intention by action recognition. The experiment shows that our system enables to generate VFX for short video more easier and efficient.