Abstract:Visual localization is a fundamental machine learning problem. Absolute Pose Regression (APR) trains a scene-dependent model to efficiently map an input image to the camera pose in a pre-defined scene. However, many applications have continually changing environments, where inference data at novel poses or scene conditions (weather, geometry) appear after deployment. Training APR on a fixed dataset leads to overfitting, making it fail catastrophically on challenging novel data. This work proposes Continual Domain Expansion (ConDo), which continually collects unlabeled inference data to update the deployed APR. Instead of applying standard unsupervised domain adaptation methods which are ineffective for APR, ConDo effectively learns from unlabeled data by distilling knowledge from scene-agnostic localization methods. By sampling data uniformly from historical and newly collected data, ConDo can effectively expand the generalization domain of APR. Large-scale benchmarks with various scene types are constructed to evaluate models under practical (long-term) data changes. ConDo consistently and significantly outperforms baselines across architectures, scene types, and data changes. On challenging scenes (Fig.1), it reduces the localization error by >7x (14.8m vs 1.7m). Analysis shows the robustness of ConDo against compute budgets, replay buffer sizes and teacher prediction noise. Comparing to model re-training, ConDo achieves similar performance up to 25x faster.
Abstract:The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.