Abstract:Video quality assessment (VQA) is a challenging problem due to the numerous factors that can affect the perceptual quality of a video, \eg, content attractiveness, distortion type, motion pattern, and level. However, annotating the Mean opinion score (MOS) for videos is expensive and time-consuming, which limits the scale of VQA datasets, and poses a significant obstacle for deep learning-based methods. In this paper, we propose a VQA method named PTM-VQA, which leverages PreTrained Models to transfer knowledge from models pretrained on various pre-tasks, enabling benefits for VQA from different aspects. Specifically, we extract features of videos from different pretrained models with frozen weights and integrate them to generate representation. Since these models possess various fields of knowledge and are often trained with labels irrelevant to quality, we propose an Intra-Consistency and Inter-Divisibility (ICID) loss to impose constraints on features extracted by multiple pretrained models. The intra-consistency constraint ensures that features extracted by different pretrained models are in the same unified quality-aware latent space, while the inter-divisibility introduces pseudo clusters based on the annotation of samples and tries to separate features of samples from different clusters. Furthermore, with a constantly growing number of pretrained models, it is crucial to determine which models to use and how to use them. To address this problem, we propose an efficient scheme to select suitable candidates. Models with better clustering performance on VQA datasets are chosen to be our candidates. Extensive experiments demonstrate the effectiveness of the proposed method.
Abstract:Vision-language pre-trained models have achieved impressive performance on various downstream tasks. However, their large model sizes hinder their utilization on platforms with limited computational resources. We find that directly using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance. Recent efforts for VLP compression either adopt uni-modal compression metrics resulting in limited performance or involve costly mask-search processes with learnable masks. In this paper, we first propose the Module-wise Pruning Error (MoPE) metric, accurately assessing CLIP module importance by performance decline on cross-modal tasks. Using the MoPE metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages. For pre-training, MoPE-CLIP effectively leverages knowledge from the teacher model, significantly reducing pre-training costs while maintaining strong zero-shot capabilities. For fine-tuning, consecutive pruning from width to depth yields highly competitive task-specific models. Extensive experiments in two stages demonstrate the effectiveness of the MoPE metric, and MoPE-CLIP outperforms previous state-of-the-art VLP compression methods.
Abstract:Predicting natural and diverse 3D hand gestures from the upper body dynamics is a practical yet challenging task in virtual avatar creation. Previous works usually overlook the asymmetric motions between two hands and generate two hands in a holistic manner, leading to unnatural results. In this work, we introduce a novel bilateral hand disentanglement based two-stage 3D hand generation method to achieve natural and diverse 3D hand prediction from body dynamics. In the first stage, we intend to generate natural hand gestures by two hand-disentanglement branches. Considering the asymmetric gestures and motions of two hands, we introduce a Spatial-Residual Memory (SRM) module to model spatial interaction between the body and each hand by residual learning. To enhance the coordination of two hand motions wrt. body dynamics holistically, we then present a Temporal-Motion Memory (TMM) module. TMM can effectively model the temporal association between body dynamics and two hand motions. The second stage is built upon the insight that 3D hand predictions should be non-deterministic given the sequential body postures. Thus, we further diversify our 3D hand predictions based on the initial output from the stage one. Concretely, we propose a Prototypical-Memory Sampling Strategy (PSS) to generate the non-deterministic hand gestures by gradient-based Markov Chain Monte Carlo (MCMC) sampling. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on the B2H dataset and our newly collected TED Hands dataset. The dataset and code are available at https://github.com/XingqunQi-lab/Diverse-3D-Hand-Gesture-Prediction.
Abstract:Text-driven person image generation is an emerging and challenging task in cross-modality image generation. Controllable person image generation promotes a wide range of applications such as digital human interaction and virtual try-on. However, previous methods mostly employ single-modality information as the prior condition (e.g. pose-guided person image generation), or utilize the preset words for text-driven human synthesis. Introducing a sentence composed of free words with an editable semantic pose map to describe person appearance is a more user-friendly way. In this paper, we propose HumanDiffusion, a coarse-to-fine alignment diffusion framework, for text-driven person image generation. Specifically, two collaborative modules are proposed, the Stylized Memory Retrieval (SMR) module for fine-grained feature distillation in data processing and the Multi-scale Cross-modality Alignment (MCA) module for coarse-to-fine feature alignment in diffusion. These two modules guarantee the alignment quality of the text and image, from image-level to feature-level, from low-resolution to high-resolution. As a result, HumanDiffusion realizes open-vocabulary person image generation with desired semantic poses. Extensive experiments conducted on DeepFashion demonstrate the superiority of our method compared with previous approaches. Moreover, better results could be obtained for complicated person images with various details and uncommon poses.
Abstract:In recent years, deep convolution neural networks (DCNNs) have achieved great prospects in coronary artery vessel segmentation. However, it is difficult to deploy complicated models in clinical scenarios since high-performance approaches have excessive parameters and high computation costs. To tackle this problem, we propose \textbf{LightVessel}, a Similarity Knowledge Distillation Framework, for lightweight coronary artery vessel segmentation. Primarily, we propose a Feature-wise Similarity Distillation (FSD) module for semantic-shift modeling. Specifically, we calculate the feature similarity between the symmetric layers from the encoder and decoder. Then the similarity is transferred as knowledge from a cumbersome teacher network to a non-trained lightweight student network. Meanwhile, for encouraging the student model to learn more pixel-wise semantic information, we introduce the Adversarial Similarity Distillation (ASD) module. Concretely, the ASD module aims to construct the spatial adversarial correlation between the annotation and prediction from the teacher and student models, respectively. Through the ASD module, the student model obtains fined-grained subtle edge segmented results of the coronary artery vessel. Extensive experiments conducted on Clinical Coronary Artery Vessel Dataset demonstrate that LightVessel outperforms various knowledge distillation counterparts.
Abstract:Efficient medical image segmentation aims to provide accurate pixel-wise prediction for the medical images with the lightweight implementation framework. However, lightweight frameworks generally fail to achieve high performance, and suffer from the poor generalizable ability on cross-domain tasks.In this paper, we propose a generalizable knowledge distillation method for robust and efficient segmentation of cross-domain medical images. Primarily, we propose the Model-Specific Alignment Networks (MSAN) to provide the domain-invariant representations which are regularized by a Pre-trained Semantic AutoEncoder (P-SAE). Meanwhile, a customized Alignment Consistency Training (ACT) strategy is designed to promote the MSAN training. With the domain-invariant representative vectors in MSAN, we propose two generalizable knowledge distillation schemes, Dual Contrastive Graph Distillation (DCGD) and Domain-Invariant Cross Distillation (DICD). Specifically, in DCGD, two types of implicit contrastive graphs are designed to represent the intra-coupling and inter-coupling semantic correlations from the perspective of data distribution. In DICD, the domain-invariant semantic vectors from the two models (i.e., teacher and student) are leveraged to cross-reconstruct features by the header exchange of MSAN, which achieves generalizable improvement for both the encoder and decoder in the student model. Furthermore, a metric named Fr\'echet Semantic Distance (FSD) is tailored to verify the effectiveness of the regularized domain-invariant features. Extensive experiments conducted on the Liver and Retinal Vessel Segmentation datasets demonstrate the priority of our method, in terms of performance and generalization on lightweight frameworks.
Abstract:Face inpainting aims to complete the corrupted regions of the face images, which requires coordination between the completed areas and the non-corrupted areas. Recently, memory-oriented methods illustrate great prospects in the generation related tasks by introducing an external memory module to improve image coordination. However, such methods still have limitations in restoring the consistency and continuity for specificfacial semantic parts. In this paper, we propose the coarse-to-fine Memory-Disentangled Refinement Networks (MDRNets) for coordinated face inpainting, in which two collaborative modules are integrated, Disentangled Memory Module (DMM) and Mask-Region Enhanced Module (MREM). Specifically, the DMM establishes a group of disentangled memory blocks to store the semantic-decoupled face representations, which could provide the most relevant information to refine the semantic-level coordination. The MREM involves a masked correlation mining mechanism to enhance the feature relationships into the corrupted regions, which could also make up for the correlation loss caused by memory disentanglement. Furthermore, to better improve the inter-coordination between the corrupted and non-corrupted regions and enhance the intra-coordination in corrupted regions, we design InCo2 Loss, a pair of similarity based losses to constrain the feature consistency. Eventually, extensive experiments conducted on CelebA-HQ and FFHQ datasets demonstrate the superiority of our MDRNets compared with previous State-Of-The-Art methods.
Abstract:Existing text-to-image synthesis methods generally are only applicable to words in the training dataset. However, human faces are so variable to be described with limited words. So this paper proposes the first free-style text-to-face method namely AnyFace enabling much wider open world applications such as metaverse, social media, cosmetics, forensics, etc. AnyFace has a novel two-stream framework for face image synthesis and manipulation given arbitrary descriptions of the human face. Specifically, one stream performs text-to-face generation and the other conducts face image reconstruction. Facial text and image features are extracted using the CLIP (Contrastive Language-Image Pre-training) encoders. And a collaborative Cross Modal Distillation (CMD) module is designed to align the linguistic and visual features across these two streams. Furthermore, a Diverse Triplet Loss (DT loss) is developed to model fine-grained features and improve facial diversity. Extensive experiments on Multi-modal CelebA-HQ and CelebAText-HQ demonstrate significant advantages of AnyFace over state-of-the-art methods. AnyFace can achieve high-quality, high-resolution, and high-diversity face synthesis and manipulation results without any constraints on the number and content of input captions.
Abstract:With the development of deep convolutional neural networks, medical image segmentation has achieved a series of breakthroughs in recent years. However, the higher-performance convolutional neural networks always mean numerous parameters and high computation costs, which will hinder the applications in clinical scenarios. Meanwhile, the scarceness of large-scale annotated medical image datasets further impedes the application of high-performance networks. To tackle these problems, we propose Graph Flow, a comprehensive knowledge distillation framework, for both network-efficiency and annotation-efficiency medical image segmentation. Specifically, our core Graph Flow Distillation transfer the essence of cross-layer variations from a well-trained cumbersome teacher network to a non-trained compact student network. In addition, an unsupervised Paraphraser Module is designed to purify the knowledge of the teacher network, which is also beneficial for the stabilization of training procedure. Furthermore, we build a unified distillation framework by integrating the adversarial distillation and the vanilla logits distillation, which can further refine the final predictions of the compact network. Extensive experiments conducted on Gastric Cancer Segmentation Dataset and Synapse Multi-organ Segmentation Dataset demonstrate the prominent ability of our method which achieves state-of-the-art performance on these different-modality and multi-category medical image datasets. Moreover, we demonstrate the effectiveness of our Graph Flow through a new semi-supervised paradigm for dual efficient medical image segmentation. Our code will be available at Graph Flow.
Abstract:Face sketch synthesis has been widely used in multi-media entertainment and law enforcement. Despite the recent developments in deep neural networks, accurate and realistic face sketch synthesis is still a challenging task due to the diversity and complexity of human faces. Current image-to-image translation-based face sketch synthesis frequently encounters over-fitting problems when it comes to small-scale datasets. To tackle this problem, we present an end-to-end Memory Oriented Style Transfer Network (MOST-Net) for face sketch synthesis which can produce high-fidelity sketches with limited data. Specifically, an external self-supervised dynamic memory module is introduced to capture the domain alignment knowledge in the long term. In this way, our proposed model could obtain the domain-transfer ability by establishing the durable relationship between faces and corresponding sketches on the feature level. Furthermore, we design a novel Memory Refinement Loss (MR Loss) for feature alignment in the memory module, which enhances the accuracy of memory slots in an unsupervised manner. Extensive experiments on the CUFS and the CUFSF datasets show that our MOST-Net achieves state-of-the-art performance, especially in terms of the Structural Similarity Index(SSIM).