Abstract:Terrain analysis is critical for the practical application of ground mobile robots in real-world tasks, especially in outdoor unstructured environments. In this paper, we propose a novel spatial-temporal traversability assessment method, which aims to enable autonomous robots to effectively navigate through complex terrains. Our approach utilizes sparse Gaussian processes (SGP) to extract geometric features (curvature, gradient, elevation, etc.) directly from point cloud scans. These features are then used to construct a high-resolution local traversability map. Then, we design a spatial-temporal Bayesian Gaussian kernel (BGK) inference method to dynamically evaluate traversability scores, integrating historical and real-time data while considering factors such as slope, flatness, gradient, and uncertainty metrics. GPU acceleration is applied in the feature extraction step, and the system achieves real-time performance. Extensive simulation experiments across diverse terrain scenarios demonstrate that our method outperforms SOTA approaches in both accuracy and computational efficiency. Additionally, we develop an autonomous navigation framework integrated with the traversability map and validate it with a differential driven vehicle in complex outdoor environments. Our code will be open-source for further research and development by the community, https://github.com/ZJU-FAST-Lab/FSGP_BGK.
Abstract:Autonomous navigation of car-like robots on uneven terrain poses unique challenges compared to flat terrain, particularly in traversability assessment and terrain-associated kinematic modelling for motion planning. This paper introduces SEB-Naver, a novel SE(2)-based local navigation framework designed to overcome these challenges. First, we propose an efficient traversability assessment method for SE(2) grids, leveraging GPU parallel computing to enable real-time updates and maintenance of local maps. Second, inspired by differential flatness, we present an optimization-based trajectory planning method that integrates terrain-associated kinematic models, significantly improving both planning efficiency and trajectory quality. Finally, we unify these components into SEB-Naver, achieving real-time terrain assessment and trajectory optimization. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our approach. The code is at https://github.com/ZJU-FAST-Lab/seb_naver.
Abstract:The tractor-trailer vehicle (robot) consists of a drivable tractor and one or more non-drivable trailers connected via hitches. Compared to typical car-like robots, the addition of trailers provides greater transportation capability. However, this also complicates motion planning due to the robot's complex kinematics, high-dimensional state space, and deformable structure. To efficiently plan safe, time-optimal trajectories that adhere to the kinematic constraints of the robot and address the challenges posed by its unique features, this paper introduces a lightweight, compact, and high-order smooth trajectory representation for tractor-trailer robots. Based on it, we design an efficiently solvable spatio-temporal trajectory optimization problem. To deal with deformable structures, which leads to difficulties in collision avoidance, we fully leverage the collision-free regions of the environment, directly applying deformations to trajectories in continuous space. This approach not requires constructing safe regions from the environment using convex approximations through collision-free seed points before each optimization, avoiding the loss of the solution space, thus reducing the dependency of the optimization on initial values. Moreover, a multi-terminal fast path search algorithm is proposed to generate the initial values for optimization. Extensive simulation experiments demonstrate that our approach achieves several-fold improvements in efficiency compared to existing algorithms, while also ensuring lower curvature and trajectory duration. Real-world experiments involving the transportation, loading and unloading of goods in both indoor and outdoor scenarios further validate the effectiveness of our method. The source code is accessible at https://github.com/ZJU-FAST-Lab/tracailer/.
Abstract:The previous advancements in pathology image understanding primarily involved developing models tailored to specific tasks. Recent studies has demonstrated that the large vision-language model can enhance the performance of various downstream tasks in medical image understanding. In this study, we developed a domain-specific large language-vision assistant (PA-LLaVA) for pathology image understanding. Specifically, (1) we first construct a human pathology image-text dataset by cleaning the public medical image-text data for domain-specific alignment; (2) Using the proposed image-text data, we first train a pathology language-image pretraining (PLIP) model as the specialized visual encoder for pathology image, and then we developed scale-invariant connector to avoid the information loss caused by image scaling; (3) We adopt two-stage learning to train PA-LLaVA, first stage for domain alignment, and second stage for end to end visual question \& answering (VQA) task. In experiments, we evaluate our PA-LLaVA on both supervised and zero-shot VQA datasets, our model achieved the best overall performance among multimodal models of similar scale. The ablation experiments also confirmed the effectiveness of our design. We posit that our PA-LLaVA model and the datasets presented in this work can promote research in field of computational pathology. All codes are available at: https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA}{https://github.com/ddw2AIGROUP2CQUPT/PA-LLaVA
Abstract:Interactive segmentation algorithms based on click points have garnered significant attention from researchers in recent years. However, existing studies typically use sparse click maps as model inputs to segment specific target objects, which primarily affect local regions and have limited abilities to focus on the whole target object, leading to increased times of clicks. In addition, most existing algorithms can not balance well between high performance and efficiency. To address this issue, we propose a click attention algorithm that expands the influence range of positive clicks based on the similarity between positively-clicked regions and the whole input. We also propose a discriminative affinity loss to reduce the attention coupling between positive and negative click regions to avoid an accuracy decrease caused by mutual interference between positive and negative clicks. Extensive experiments demonstrate that our approach is superior to existing methods and achieves cutting-edge performance in fewer parameters. An interactive demo and all reproducible codes will be released at https://github.com/hahamyt/ClickAttention.
Abstract:Just as humans can become disoriented in featureless deserts or thick fogs, not all environments are conducive to the Localization Accuracy and Stability (LAS) of autonomous robots. This paper introduces an efficient framework designed to enhance LiDAR-based LAS through strategic trajectory generation, known as Perception-aware Planning. Unlike vision-based frameworks, the LiDAR-based requires different considerations due to unique sensor attributes. Our approach focuses on two main aspects: firstly, assessing the impact of LiDAR observations on LAS. We introduce a perturbation-induced metric to provide a comprehensive and reliable evaluation of LiDAR observations. Secondly, we aim to improve motion planning efficiency. By creating a Static Observation Loss Map (SOLM) as an intermediary, we logically separate the time-intensive evaluation and motion planning phases, significantly boosting the planning process. In the experimental section, we demonstrate the effectiveness of the proposed metrics across various scenes and the feature of trajectories guided by different metrics. Ultimately, our framework is tested in a real-world scenario, enabling the robot to actively choose topologies and orientations preferable for localization. The source code is accessible at https://github.com/ZJU-FAST-Lab/LF-3PM.
Abstract:Dynamic jumping on high platforms and over gaps differentiates legged robots from wheeled counterparts. Compared to walking on rough terrains, dynamic locomotion on abrupt surfaces requires fusing proprioceptive and exteroceptive perception for explosive movements. In this paper, we propose SF-TIM (Simple Framework combining Terrain Imagination and Measurement), a single-policy method that enhances quadrupedal robot jumping agility, while preserving their fundamental blind walking capabilities. In addition, we introduce a terrain-guided reward design specifically to assist quadrupedal robots in high jumping, improving their performance in this task. To narrow the simulation-to-reality gap in quadrupedal robot learning, we introduce a stable and high-speed elevation map generation framework, enabling zero-shot simulation-to-reality transfer of locomotion ability. Our algorithm has been deployed and validated on both the small-/large-size quadrupedal robots, demonstrating its effectiveness in real-world applications: the robot has successfully traversed various high platforms and gaps, showing the robustness of our proposed approach. A demo video has been made available at https://flysoaryun.github.io/SF-TIM.
Abstract:In recent times, an increasing number of researchers have been devoted to utilizing deep neural networks for end-to-end flight navigation. This approach has gained traction due to its ability to bridge the gap between perception and planning that exists in traditional methods, thereby eliminating delays between modules. However, the practice of replacing original modules with neural networks in a black-box manner diminishes the overall system's robustness and stability. It lacks principled explanations and often fails to consistently generate high-quality motion trajectories. Furthermore, such methods often struggle to rigorously account for the robot's kinematic constraints, resulting in the generation of trajectories that cannot be executed satisfactorily. In this work, we combine the advantages of traditional methods and neural networks by proposing an optimization-embedded neural network. This network can learn high-quality trajectories directly from visual inputs without the need of mapping, while ensuring dynamic feasibility. Here, the deep neural network is employed to directly extract environment safety regions from depth images. Subsequently, we employ a model-based approach to represent these regions as safety constraints in trajectory optimization. Leveraging the availability of highly efficient optimization algorithms, our method robustly converges to feasible and optimal solutions that satisfy various user-defined constraints. Moreover, we differentiate the optimization process, allowing it to be trained as a layer within the neural network. This approach facilitates the direct interaction between perception and planning, enabling the network to focus more on the spatial regions where optimal solutions exist. As a result, it further enhances the quality and stability of the generated trajectories.
Abstract:Click-point-based interactive segmentation has received widespread attention due to its efficiency. However, it's hard for existing algorithms to obtain precise and robust responses after multiple clicks. In this case, the segmentation results tend to have little change or are even worse than before. To improve the robustness of the response, we propose a structured click intent model based on graph neural networks, which adaptively obtains graph nodes via the global similarity of user-clicked Transformer tokens. Then the graph nodes will be aggregated to obtain structured interaction features. Finally, the dual cross-attention will be used to inject structured interaction features into vision Transformer features, thereby enhancing the control of clicks over segmentation results. Extensive experiments demonstrated the proposed algorithm can serve as a general structure in improving Transformer-based interactive segmenta?tion performance. The code and data will be released at https://github.com/hahamyt/scc.
Abstract:In the field of Industrial Informatics, interactive segmentation has gained significant attention for its application in human-computer interaction and data annotation. Existing algorithms, however, face challenges in balancing the segmentation accuracy between large and small targets, often leading to an increased number of user interactions. To tackle this, a novel multi-scale token adaptation algorithm, leveraging token similarity, has been devised to enhance segmentation across varying target sizes. This algorithm utilizes a differentiable top-k tokens selection mechanism, allowing for fewer tokens to be used while maintaining efficient multi-scale token interaction. Furthermore, a contrastive loss is introduced to better discriminate between target and background tokens, improving the correctness and robustness of the tokens similar to the target. Extensive benchmarking shows that the algorithm achieves state-of-the-art (SOTA) performance compared to current methods. An interactive demo and all reproducible codes will be released at https://github.com/hahamyt/mst.