Abstract:Video Moment Retrieval and Highlight Detection aim to find corresponding content in the video based on a text query. Existing models usually first use contrastive learning methods to align video and text features, then fuse and extract multimodal information, and finally use a Transformer Decoder to decode multimodal information. However, existing methods face several issues: (1) Overlapping semantic information between different samples in the dataset hinders the model's multimodal aligning performance; (2) Existing models are not able to efficiently extract local features of the video; (3) The Transformer Decoder used by the existing model cannot adequately decode multimodal features. To address the above issues, we proposed the LD-DETR model for Video Moment Retrieval and Highlight Detection tasks. Specifically, we first distilled the similarity matrix into the identity matrix to mitigate the impact of overlapping semantic information. Then, we designed a method that enables convolutional layers to extract multimodal local features more efficiently. Finally, we fed the output of the Transformer Decoder back into itself to adequately decode multimodal information. We evaluated LD-DETR on four public benchmarks and conducted extensive experiments to demonstrate the superiority and effectiveness of our approach. Our model outperforms the State-Of-The-Art models on QVHighlight, Charades-STA and TACoS datasets. Our code is available at https://github.com/qingchen239/ld-detr.
Abstract:In the domain of video question answering (VideoQA), the impact of question types on VQA systems, despite its critical importance, has been relatively under-explored to date. However, the richness of question types directly determines the range of concepts a model needs to learn, thereby affecting the upper limit of its learning capability. This paper focuses on exploring the significance of different question types for VQA systems and their impact on performance, revealing a series of issues such as insufficient learning and model degradation due to uneven distribution of question types. Particularly, considering the significant variation in dependency on temporal information across different question types, and given that the representation of such information coincidentally represents a principal challenge and difficulty for VideoQA as opposed to ImageQA. To address these challenges, we propose QTG-VQA, a novel architecture that incorporates question-type-guided attention and adaptive learning mechanism. Specifically, as to temporal-type questions, we design Masking Frame Modeling technique to enhance temporal modeling, aimed at encouraging the model to grasp richer visual-language relationships and manage more intricate temporal dependencies. Furthermore, a novel evaluation metric tailored to question types is introduced. Experimental results confirm the effectiveness of our approach.
Abstract:A key challenge in video question answering is how to realize the cross-modal semantic alignment between textual concepts and corresponding visual objects. Existing methods mostly seek to align the word representations with the video regions. However, word representations are often not able to convey a complete description of textual concepts, which are in general described by the compositions of certain words. To address this issue, we propose to first build a syntactic dependency tree for each question with an off-the-shelf tool and use it to guide the extraction of meaningful word compositions. Based on the extracted compositions, a hypergraph is further built by viewing the words as nodes and the compositions as hyperedges. Hypergraph convolutional networks (HCN) are then employed to learn the initial representations of word compositions. Afterwards, an optimal transport based method is proposed to perform cross-modal semantic alignment for the textual and visual semantic space. To reflect the cross-modal influences, the cross-modal information is incorporated into the initial representations, leading to a model named cross-modality-aware syntactic HCN. Experimental results on three benchmarks show that our method outperforms all strong baselines. Further analyses demonstrate the effectiveness of each component, and show that our model is good at modeling different levels of semantic compositions and filtering out irrelevant information.
Abstract:Cross-Lingual Information Retrieval (CLIR) aims to rank the documents written in a language different from the user's query. The intrinsic gap between different languages is an essential challenge for CLIR. In this paper, we introduce the multilingual knowledge graph (KG) to the CLIR task due to the sufficient information of entities in multiple languages. It is regarded as a "silver bullet" to simultaneously perform explicit alignment between queries and documents and also broaden the representations of queries. And we propose a model named CLIR with hierarchical knowledge enhancement (HIKE) for our task. The proposed model encodes the textual information in queries, documents and the KG with multilingual BERT, and incorporates the KG information in the query-document matching process with a hierarchical information fusion mechanism. Particularly, HIKE first integrates the entities and their neighborhood in KG into query representations with a knowledge-level fusion, then combines the knowledge from both source and target languages to further mitigate the linguistic gap with a language-level fusion. Finally, experimental results demonstrate that HIKE achieves substantial improvements over state-of-the-art competitors.
Abstract:In this paper, we introduce the Multi-Modal Video Reasoning and Analyzing Competition (MMVRAC) workshop in conjunction with ICCV 2021. This competition is composed of four different tracks, namely, video question answering, skeleton-based action recognition, fisheye video-based action recognition, and person re-identification, which are based on two datasets: SUTD-TrafficQA and UAV-Human. We summarize the top-performing methods submitted by the participants in this competition and show their results achieved in the competition.