Abstract:Large Language Models (LLMs) like GPT-4, LLaMA, and Qwen have demonstrated remarkable success across a wide range of applications. However, these models remain inherently vulnerable to prompt injection attacks, which can bypass existing safety mechanisms, highlighting the urgent need for more robust attack detection methods and comprehensive evaluation benchmarks. To address these challenges, we introduce GenTel-Safe, a unified framework that includes a novel prompt injection attack detection method, GenTel-Shield, along with a comprehensive evaluation benchmark, GenTel-Bench, which compromises 84812 prompt injection attacks, spanning 3 major categories and 28 security scenarios. To prove the effectiveness of GenTel-Shield, we evaluate it together with vanilla safety guardrails against the GenTel-Bench dataset. Empirically, GenTel-Shield can achieve state-of-the-art attack detection success rates, which reveals the critical weakness of existing safeguarding techniques against harmful prompts. For reproducibility, we have made the code and benchmarking dataset available on the project page at https://gentellab.github.io/gentel-safe.github.io/.
Abstract:The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these models still have numerous security vulnerabilities, particularly when faced with jailbreak attacks. Therefore, by investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and guide us in developing more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analysis-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% Attack Success Rate (ASR) and 1.06 Attack Efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse.
Abstract:Compositional actions consist of dynamic (verbs) and static (objects) concepts. Humans can easily recognize unseen compositions using the learned concepts. For machines, solving such a problem requires a model to recognize unseen actions composed of previously observed verbs and objects, thus requiring, so-called, compositional generalization ability. To facilitate this research, we propose a novel Zero-Shot Compositional Action Recognition (ZS-CAR) task. For evaluating the task, we construct a new benchmark, Something-composition (Sth-com), based on the widely used Something-Something V2 dataset. We also propose a novel Component-to-Composition (C2C) learning method to solve the new ZS-CAR task. C2C includes an independent component learning module and a composition inference module. Last, we devise an enhanced training strategy to address the challenges of component variation between seen and unseen compositions and to handle the subtle balance between learning seen and unseen actions. The experimental results demonstrate that the proposed framework significantly surpasses the existing compositional generalization methods and sets a new state-of-the-art. The new Sth-com benchmark and code are available at https://github.com/RongchangLi/ZSCAR_C2C.
Abstract:With the development of deep learning processors and accelerators, deep learning models have been widely deployed on edge devices as part of the Internet of Things. Edge device models are generally considered as valuable intellectual properties that are worth for careful protection. Unfortunately, these models have a great risk of being stolen or illegally copied. The existing model protections using encryption algorithms are suffered from high computation overhead which is not practical due to the limited computing capacity on edge devices. In this work, we propose a light-weight, practical, and general Edge device model Pro tection method at neuron level, denoted as EdgePro. Specifically, we select several neurons as authorization neurons and set their activation values to locking values and scale the neuron outputs as the "asswords" during training. EdgePro protects the model by ensuring it can only work correctly when the "passwords" are met, at the cost of encrypting and storing the information of the "passwords" instead of the whole model. Extensive experimental results indicate that EdgePro can work well on the task of protecting on datasets with different modes. The inference time increase of EdgePro is only 60% of state-of-the-art methods, and the accuracy loss is less than 1%. Additionally, EdgePro is robust against adaptive attacks including fine-tuning and pruning, which makes it more practical in real-world applications. EdgePro is also open sourced to facilitate future research: https://github.com/Leon022/Edg
Abstract:In this paper, we introduce the Multi-Modal Video Reasoning and Analyzing Competition (MMVRAC) workshop in conjunction with ICCV 2021. This competition is composed of four different tracks, namely, video question answering, skeleton-based action recognition, fisheye video-based action recognition, and person re-identification, which are based on two datasets: SUTD-TrafficQA and UAV-Human. We summarize the top-performing methods submitted by the participants in this competition and show their results achieved in the competition.