Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Backdoor attacks pose a severe threat to deep learning, yet their impact on object detection remains poorly understood compared to image classification. While attacks have been proposed, we identify critical weaknesses in existing detection-based methods, specifically their reliance on unrealistic assumptions and a lack of physical validation. To bridge this gap, we introduce BadDet+, a penalty-based framework that unifies Region Misclassification Attacks (RMA) and Object Disappearance Attacks (ODA). The core mechanism utilizes a log-barrier penalty to suppress true-class predictions for triggered inputs, resulting in (i) position and scale invariance, and (ii) enhanced physical robustness. On real-world benchmarks, BadDet+ achieves superior synthetic-to-physical transfer compared to existing RMA and ODA baselines while preserving clean performance. Theoretical analysis confirms the proposed penalty acts within a trigger-specific feature subspace, reliably inducing attacks without degrading standard inference. These results highlight significant vulnerabilities in object detection and the necessity for specialized defenses.
Occluded traffic agents pose a significant challenge for autonomous vehicles, as hidden pedestrians or vehicles can appear unexpectedly, yet this problem remains understudied. Existing learning-based methods, while capable of inferring the presence of hidden agents, often produce redundant occupancy predictions where a single agent is identified multiple times. This issue complicates downstream planning and increases computational load. To address this, we introduce MatchInformer, a novel transformer-based approach that builds on the state-of-the-art SceneInformer architecture. Our method improves upon prior work by integrating Hungarian Matching, a state-of-the-art object matching algorithm from object detection, into the training process to enforce a one-to-one correspondence between predictions and ground truth, thereby reducing redundancy. We further refine trajectory forecasts by decoupling an agent's heading from its motion, a strategy that improves the accuracy and interpretability of predicted paths. To better handle class imbalances, we propose using the Matthews Correlation Coefficient (MCC) to evaluate occupancy predictions. By considering all entries in the confusion matrix, MCC provides a robust measure even in sparse or imbalanced scenarios. Experiments on the Waymo Open Motion Dataset demonstrate that our approach improves reasoning about occluded regions and produces more accurate trajectory forecasts than prior methods.
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
Legal judgments may contain errors due to the complexity of case circumstances and the abstract nature of legal concepts, while existing appellate review mechanisms face efficiency pressures from a surge in case volumes. Although current legal AI research focuses on tasks like judgment prediction and legal document generation, the task of judgment review differs fundamentally in its objectives and paradigm: it centers on detecting, classifying, and correcting errors after a judgment is issued, constituting anomaly detection rather than prediction or generation. To address this research gap, we introduce a novel task APPELLATE REVIEW, aiming to assess models' diagnostic reasoning and reliability in legal practice. We also construct a novel dataset benchmark AR-BENCH, which comprises 8,700 finely annotated decisions and 34,617 supplementary corpora. By evaluating 14 large language models, we reveal critical limitations in existing models' ability to identify legal application errors, providing empirical evidence for future improvements.
We study online inverse linear optimization, also known as contextual recommendation, where a learner sequentially infers an agent's hidden objective vector from observed optimal actions over feasible sets that change over time. The learner aims to recommend actions that perform well under the agent's true objective, and the performance is measured by the regret, defined as the cumulative gap between the agent's optimal values and those achieved by the learner's recommended actions. Prior work has established a regret bound of $O(d\log T)$, as well as a finite but exponentially large bound of $\exp(O(d\log d))$, where $d$ is the dimension of the optimization problem and $T$ is the time horizon, while a regret lower bound of $Ω(d)$ is known (Gollapudi et al. 2021; Sakaue et al. 2025). Whether a finite regret bound polynomial in $d$ is achievable or not has remained an open question. We partially resolve this by showing that when the feasible sets are M-convex -- a broad class that includes matroids -- a finite regret bound of $O(d\log d)$ is possible. We achieve this by combining a structural characterization of optimal solutions on M-convex sets with a geometric volume argument. Moreover, we extend our approach to adversarially corrupted feedback in up to $C$ rounds. We obtain a regret bound of $O((C+1)d\log d)$ without prior knowledge of $C$, by monitoring directed graphs induced by the observed feedback to detect corruptions adaptively.
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
Open world object detection faces a significant challenge in domain-invariant representation, i.e., implicit non-causal factors. Most domain generalization (DG) methods based on domain adversarial learning (DAL) pay much attention to learn domain-invariant information, but often overlook the potential non-causal factors. We unveil two critical causes: 1) The domain discriminator-based DAL method is subject to the extremely sparse domain label, i.e., assigning only one domain label to each dataset, thus can only associate explicit non-causal factor, which is incredibly limited. 2) The non-causal factors, induced by unidentified data bias, are excessively implicit and cannot be solely discerned by conventional DAL paradigm. Based on these key findings, inspired by the Granular-Ball perspective, we propose an improved DAL method, i.e., GB-DAL. The proposed GB-DAL utilizes Prototype-based Granular Ball Splitting (PGBS) module to generate more dense domains from limited datasets, akin to more fine-grained granular balls, indicating more potential non-causal factors. Inspired by adversarial perturbations akin to non-causal factors, we propose a Simulated Non-causal Factors (SNF) module as a means of data augmentation to reduce the implicitness of non-causal factors, and facilitate the training of GB-DAL. Comparative experiments on numerous benchmarks demonstrate that our method achieves better generalization performance in novel circumstances.
The Segment Anything Model has revolutionized image segmentation with its zero-shot capabilities, yet its reliance on manual prompts hinders fully automated deployment. While integrating object detectors as prompt generators offers a pathway to automation, existing pipelines suffer from two fundamental limitations: objective mismatch, where detectors optimized for geometric localization do not correspond to the optimal prompting context required by SAM, and alignment overfitting in standard joint training, where the detector simply memorizes specific prompt adjustments for training samples rather than learning a generalizable policy. To bridge this gap, we introduce BLO-Inst, a unified framework that aligns detection and segmentation objectives by bi-level optimization. We formulate the alignment as a nested optimization problem over disjoint data splits. In the lower level, the SAM is fine-tuned to maximize segmentation fidelity given the current detection proposals on a subset ($D_1$). In the upper level, the detector is updated to generate bounding boxes that explicitly minimize the validation loss of the fine-tuned SAM on a separate subset ($D_2$). This effectively transforms the detector into a segmentation-aware prompt generator, optimizing the bounding boxes not just for localization accuracy, but for downstream mask quality. Extensive experiments demonstrate that BLO-Inst achieves superior performance, outperforming standard baselines on tasks in general and biomedical domains.
Deep learning-based object detectors have achieved impressive performance in microscopy imaging, yet their confidence estimates often lack calibration, limiting their reliability for biomedical applications. In this work, we introduce a new approach to improve model calibration by leveraging multi-rater annotations. We propose to train separate models on the annotations from single experts and aggregate their predictions to emulate consensus. This improves upon label sampling strategies, where models are trained on mixed annotations, and offers a more principled way to capture inter-rater variability. Experiments on a colorectal organoid dataset annotated by two experts demonstrate that our rater-specific ensemble strategy improves calibration performance while maintaining comparable detection accuracy. These findings suggest that explicitly modelling rater disagreement can lead to more trustworthy object detectors in biomedical imaging.
Visual anomaly detection in multi-class settings poses significant challenges due to the diversity of object categories, the scarcity of anomalous examples, and the presence of camouflaged defects. In this paper, we propose PromptMAD, a cross-modal prompting framework for unsupervised visual anomaly detection and localization that integrates semantic guidance through vision-language alignment. By leveraging CLIP-encoded text prompts describing both normal and anomalous class-specific characteristics, our method enriches visual reconstruction with semantic context, improving the detection of subtle and textural anomalies. To further address the challenge of class imbalance at the pixel level, we incorporate Focal loss function, which emphasizes hard-to-detect anomalous regions during training. Our architecture also includes a supervised segmentor that fuses multi-scale convolutional features with Transformer-based spatial attention and diffusion iterative refinement, yielding precise and high-resolution anomaly maps. Extensive experiments on the MVTec-AD dataset demonstrate that our method achieves state-of-the-art pixel-level performance, improving mean AUC to 98.35% and AP to 66.54%, while maintaining efficiency across diverse categories.