Abstract:With the growing computational capabilities of microcontroller units (MCUs), edge devices can now support machine learning models. However, deploying decentralised federated learning (DFL) on such devices presents key challenges, including intermittent connectivity, limited communication range, and dynamic network topologies. This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Stochastic Gradient Descent (GD PSGD), designed to address these issues in resource-constrained environments. The framework incorporates a hierarchical communication structure using Distributed Kmeans (DKmeans) clustering for geographic grouping and a gossip protocol for efficient model aggregation across two layers: intra-cluster and inter-cluster. We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline using the MCUNet model on the CIFAR-10 dataset under IID and Non-IID conditions. Results demonstrate that the proposed method achieves comparable accuracy to CFL on IID datasets, requiring only 1.8 additional rounds for convergence. On Non-IID datasets, the accuracy loss remains under 8\% for moderate data imbalance. These findings highlight the framework's potential to support scalable and privacy-preserving learning on edge devices with minimal performance trade-offs.
Abstract:Tiny Machine Learning (TinyML) has become a growing field in on-device processing for Internet of Things (IoT) applications, capitalizing on AI algorithms that are optimized for their low complexity and energy efficiency. These algorithms are designed to minimize power and memory footprints, making them ideal for the constraints of IoT devices. Within this domain, Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML, owning to their event-driven processing paradigm which offers an efficient method of handling dataflow. This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model to efficiently deploy vision-based ML algorithms on TinyML systems. A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA. To evaluate the proposed model, a collision avoidance dataset is considered as a case study. The proposed SNN model is compared to the state-of-the-art works and Binarized Convolutional Neural Network (BCNN) as a baseline. The results show the proposed approach is 86% more energy efficient than the baseline.
Abstract:The advancement of sophisticated artificial intelligence (AI) algorithms has led to a notable increase in energy usage and carbon dioxide emissions, intensifying concerns about climate change. This growing problem has brought the environmental sustainability of AI technologies to the forefront, especially as they expand across various sectors. In response to these challenges, there is an urgent need for the development of sustainable AI solutions. These solutions must focus on energy-efficient embedded systems that are capable of handling diverse data types even in environments with limited resources, thereby ensuring both technological progress and environmental responsibility. Integrating complementary multimodal data into tiny machine learning models for edge devices is challenging due to increased complexity, latency, and power consumption. This work introduces TinyM$^2$Net-V3, a system that processes different modalities of complementary data, designs deep neural network (DNN) models, and employs model compression techniques including knowledge distillation and low bit-width quantization with memory-aware considerations to fit models within lower memory hierarchy levels, reducing latency and enhancing energy efficiency on resource-constrained devices. We evaluated TinyM$^2$Net-V3 in two multimodal case studies: COVID-19 detection using cough, speech, and breathing audios, and pose classification from depth and thermal images. With tiny inference models (6 KB and 58 KB), we achieved 92.95% and 90.7% accuracies, respectively. Our tiny machine learning models, deployed on resource limited hardware, demonstrated low latencies within milliseconds and very high power efficiency.
Abstract:Traditional machine learning models often require powerful hardware, making them unsuitable for deployment on resource-limited devices. Tiny Machine Learning (tinyML) has emerged as a promising approach for running machine learning models on these devices, but integrating multiple data modalities into tinyML models still remains a challenge due to increased complexity, latency, and power consumption. This paper proposes TinyVQA, a novel multimodal deep neural network for visual question answering tasks that can be deployed on resource-constrained tinyML hardware. TinyVQA leverages a supervised attention-based model to learn how to answer questions about images using both vision and language modalities. Distilled knowledge from the supervised attention-based VQA model trains the memory aware compact TinyVQA model and low bit-width quantization technique is employed to further compress the model for deployment on tinyML devices. The TinyVQA model was evaluated on the FloodNet dataset, which is used for post-disaster damage assessment. The compact model achieved an accuracy of 79.5%, demonstrating the effectiveness of TinyVQA for real-world applications. Additionally, the model was deployed on a Crazyflie 2.0 drone, equipped with an AI deck and GAP8 microprocessor. The TinyVQA model achieved low latencies of 56 ms and consumes 693 mW power while deployed on the tiny drone, showcasing its suitability for resource-constrained embedded systems.
Abstract:Demand for efficient onboard object detection is increasing due to its key role in autonomous navigation. However, deploying object detection models such as YOLO on resource constrained edge devices is challenging due to the high computational requirements of such models. In this paper, an compressed object detection model named Squeezed Edge YOLO is examined. This model is compressed and optimized to kilobytes of parameters in order to fit onboard such edge devices. To evaluate Squeezed Edge YOLO, two use cases - human and shape detection - are used to show the model accuracy and performance. Moreover, the model is deployed onboard a GAP8 processor with 8 RISC-V cores and an NVIDIA Jetson Nano with 4GB of memory. Experimental results show Squeezed Edge YOLO model size is optimized by a factor of 8x which leads to 76% improvements in energy efficiency and 3.3x faster throughout.
Abstract:Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning). Humans can generate and execute plans with temporally-extended actions and quickly learn to perform new tasks because we almost never solve problems from scratch. We want autonomous agents to have this same ability. Recently, LLMs have been shown to encode a tremendous amount of knowledge about the world and to perform impressive in-context learning and reasoning. However, using LLMs to solve real world problems is hard because they are not grounded in the current task. In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks. Instead of completely relying on LLMs, they guide a high-level policy, making learning significantly more sample efficient. This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks. We show that agents trained using our approach outperform other baselines methods and, once trained, don't need access to LLMs during deployment.
Abstract:Robots have been successfully used to perform tasks with high precision. In real-world environments with sparse rewards and multiple goals, learning is still a major challenge and Reinforcement Learning (RL) algorithms fail to learn good policies. Training in simulation environments and then fine-tuning in the real world is a common approach. However, adapting to the real-world setting is a challenge. In this paper, we present a method named Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning. We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world. Empirical results show that the proposed ReProHRL method outperforms the state-of-the-art baseline in simulation and real-world environments in terms of both training time and performance. Although both methods achieve a 100% success rate in a simple environment for single goal-based navigation, in a more complex environment and multi-goal setting, the proposed method outperforms the baseline by 18% and 5%, respectively. For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera to perform multi-goal navigation experiments.
Abstract:Learning to solve long horizon temporally extended tasks with reinforcement learning has been a challenge for several years now. We believe that it is important to leverage both the hierarchical structure of complex tasks and to use expert supervision whenever possible to solve such tasks. This work introduces an interpretable hierarchical agent framework by combining planning and semantic goal directed reinforcement learning. We assume access to certain spatial and haptic predicates and construct a simple and powerful semantic goal space. These semantic goal representations are more interpretable, making expert supervision and intervention easier. They also eliminate the need to write complex, dense reward functions thereby reducing human engineering effort. We evaluate our framework on a robotic block manipulation task and show that it performs better than other methods, including both sparse and dense reward functions. We also suggest some next steps and discuss how this framework makes interaction and collaboration with humans easier.
Abstract:With the emergence of Artificial Intelligence (AI), new attention has been given to implement AI algorithms on resource constrained tiny devices to expand the application domain of IoT. Multimodal Learning has recently become very popular with the classification task due to its impressive performance for both image and audio event classification. This paper presents TinyM$^2$Net -- a flexible system algorithm co-designed multimodal learning framework for resource constrained tiny devices. The framework was designed to be evaluated on two different case-studies: COVID-19 detection from multimodal audio recordings and battle field object detection from multimodal images and audios. In order to compress the model to implement on tiny devices, substantial network architecture optimization and mixed precision quantization were performed (mixed 8-bit and 4-bit). TinyM$^2$Net shows that even a tiny multimodal learning model can improve the classification performance than that of any unimodal frameworks. The most compressed TinyM$^2$Net achieves 88.4% COVID-19 detection accuracy (14.5% improvement from unimodal base model) and 96.8\% battle field object detection accuracy (3.9% improvement from unimodal base model). Finally, we test our TinyM$^2$Net models on a Raspberry Pi 4 to see how they perform when deployed to a resource constrained tiny device.
Abstract:Keyword Spotting nowadays is an integral part of speech-oriented user interaction targeted for smart devices. To this extent, neural networks are extensively used for their flexibility and high accuracy. However, coming up with a suitable configuration for both accuracy requirements and hardware deployment is a challenge. We propose a regression-based network exploration technique that considers the scaling of the network filters ($s$) and quantization ($q$) of the network layers, leading to a friendly and energy-efficient configuration for FPGA hardware implementation. We experiment with different combinations of $\mathcal{NN}\scriptstyle\langle q,\,s\rangle \displaystyle$ on the FPGA to profile the energy consumption of the deployed network so that the user can choose the most energy-efficient network configuration promptly. Our accelerator design is deployed on the Xilinx AC 701 platform and has at least 2.1$\times$ and 4$\times$ improvements on energy and energy efficiency results, respectively, compared to recent hardware implementations for keyword spotting.