Abstract:Diffusion-based models demonstrate impressive generation capabilities. However, they also have a massive number of parameters, resulting in enormous model sizes, thus making them unsuitable for deployment on resource-constraint devices. Block-wise generation can be a promising alternative for designing compact-sized (parameter-efficient) deep generative models since the model can generate one block at a time instead of generating the whole image at once. However, block-wise generation is also considerably challenging because ensuring coherence across generated blocks can be non-trivial. To this end, we design a retrieval-augmented generation (RAG) approach and leverage the corresponding blocks of the images retrieved by the RAG module to condition the training and generation stages of a block-wise denoising diffusion model. Our conditioning schemes ensure coherence across the different blocks during training and, consequently, during generation. While we showcase our approach using the latent diffusion model (LDM) as the base model, it can be used with other variants of denoising diffusion models. We validate the solution of the coherence problem through the proposed approach by reporting substantive experiments to demonstrate our approach's effectiveness in compact model size and excellent generation quality.
Abstract:Over the last few years, federated learning (FL) has emerged as a prominent method in machine learning, emphasizing privacy preservation by allowing multiple clients to collaboratively build a model while keeping their training data private. Despite this focus on privacy, FL models are susceptible to various attacks, including membership inference attacks (MIAs), posing a serious threat to data confidentiality. In a recent study, Rezaei \textit{et al.} revealed the existence of an accuracy-privacy trade-off in deep ensembles and proposed a few fusion strategies to overcome it. In this paper, we aim to explore the relationship between deep ensembles and FL. Specifically, we investigate whether confidence-based metrics derived from deep ensembles apply to FL and whether there is a trade-off between accuracy and privacy in FL with respect to MIA. Empirical investigations illustrate a lack of a non-monotonic correlation between the number of clients and the accuracy-privacy trade-off. By experimenting with different numbers of federated clients, datasets, and confidence-metric-based fusion strategies, we identify and analytically justify the clear existence of the accuracy-privacy trade-off.
Abstract:For half a century, artificial intelligence research has attempted to reproduce the human qualities of abstraction and reasoning - creating computer systems that can learn new concepts from a minimal set of examples, in settings where humans find this easy. While specific neural networks are able to solve an impressive range of problems, broad generalisation to situations outside their training data has proved elusive.In this work, we look at several novel approaches for solving the Abstraction & Reasoning Corpus (ARC), a dataset of abstract visual reasoning tasks introduced to test algorithms on broad generalization. Despite three international competitions with $100,000 in prizes, the best algorithms still fail to solve a majority of ARC tasks and rely on complex hand-crafted rules, without using machine learning at all. We revisit whether recent advances in neural networks allow progress on this task. First, we adapt the DreamCoder neurosymbolic reasoning solver to ARC. DreamCoder automatically writes programs in a bespoke domain-specific language to perform reasoning, using a neural network to mimic human intuition. We present the Perceptual Abstraction and Reasoning Language (PeARL) language, which allows DreamCoder to solve ARC tasks, and propose a new recognition model that allows us to significantly improve on the previous best implementation.We also propose a new encoding and augmentation scheme that allows large language models (LLMs) to solve ARC tasks, and find that the largest models can solve some ARC tasks. LLMs are able to solve a different group of problems to state-of-the-art solvers, and provide an interesting way to complement other approaches. We perform an ensemble analysis, combining models to achieve better results than any system alone. Finally, we publish the arckit Python library to make future research on ARC easier.
Abstract:We propose VEXIR2Vec, a code embedding framework for finding similar functions in binaries. Our representations rely on VEX IR, the intermediate representation used by binary analysis tools like Valgrind and angr. Our proposed embeddings encode both syntactic and semantic information to represent a function, and is both application and architecture independent. We also propose POV, a custom Peephole Optimization engine that normalizes the VEX IR for effective similarity analysis. We design several optimizations like copy/constant propagation, constant folding, common subexpression elimination and load-store elimination in POV. We evaluate our framework on two experiments -- diffing and searching -- involving binaries targeting different architectures, compiled using different compilers and versions, optimization sequences, and obfuscations. We show results on several standard projects and on real-world vulnerabilities. Our results show that VEXIR2Vec achieves superior precision and recall values compared to the state-of-the-art works. Our framework is highly scalable and is built as a multi-threaded, parallel library by only using open-source tools. VEXIR2Vec achieves about $3.2 \times$ speedup on the closest competitor, and orders-of-magnitude speedup on other tools.
Abstract:The membership inference attack (MIA) is a popular paradigm for compromising the privacy of a machine learning (ML) model. MIA exploits the natural inclination of ML models to overfit upon the training data. MIAs are trained to distinguish between training and testing prediction confidence to infer membership information. Federated Learning (FL) is a privacy-preserving ML paradigm that enables multiple clients to train a unified model without disclosing their private data. In this paper, we propose an enhanced Membership Inference Attack with the Batch-wise generated Attack Dataset (MIA-BAD), a modification to the MIA approach. We investigate that the MIA is more accurate when the attack dataset is generated batch-wise. This quantitatively decreases the attack dataset while qualitatively improving it. We show how training an ML model through FL, has some distinct advantages and investigate how the threat introduced with the proposed MIA-BAD approach can be mitigated with FL approaches. Finally, we demonstrate the qualitative effects of the proposed MIA-BAD methodology by conducting extensive experiments with various target datasets, variable numbers of federated clients, and training batch sizes.
Abstract:Jamming and intrusion detection are critical in 5G research, aiming to maintain reliability, prevent user experience degradation, and avoid infrastructure failure. This paper introduces an anonymous jamming detection model for 5G based on signal parameters from the protocol stacks. The system uses supervised and unsupervised learning for real-time, high-accuracy detection of jamming, including unknown types. Supervised models reach an AUC of 0.964 to 1, compared to LSTM models with an AUC of 0.923 to 1. However, the need for data annotation limits the supervised approach. To address this, an unsupervised auto-encoder-based anomaly detection is presented with an AUC of 0.987. The approach is resistant to adversarial training samples. For transparency and domain knowledge injection, a Bayesian network-based causation analysis is introduced.
Abstract:Lifelong learning, also referred to as continual learning, is the problem of training an AI agent continuously while also preventing it from forgetting its previously acquired knowledge. Most of the existing methods primarily focus on lifelong learning within a static environment and lack the ability to mitigate forgetting in a quickly-changing dynamic environment. Streaming lifelong learning is a challenging setting of lifelong learning with the goal of continuous learning in a dynamic non-stationary environment without forgetting. We introduce a novel approach to lifelong learning, which is streaming, requires a single pass over the data, can learn in a class-incremental manner, and can be evaluated on-the-fly (anytime inference). To accomplish these, we propose virtual gradients for continual representation learning to prevent catastrophic forgetting and leverage an exponential-moving-average-based semantic memory to further enhance performance. Extensive experiments on diverse datasets demonstrate our method's efficacy and superior performance over existing methods.
Abstract:Despite rapid advancements in lifelong learning (LLL) research, a large body of research mainly focuses on improving the performance in the existing \textit{static} continual learning (CL) setups. These methods lack the ability to succeed in a rapidly changing \textit{dynamic} environment, where an AI agent needs to quickly learn new instances in a `single pass' from the non-i.i.d (also possibly temporally contiguous/coherent) data streams without suffering from catastrophic forgetting. For practical applicability, we propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment. To address this challenging setup and various evaluation protocols, we propose a Bayesian framework, that enables fast parameter update, given a single training example, and enables any-time inference. We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further. We further propose an effective method that efficiently selects a subset of samples for online memory rehearsal and employs a new replay buffer management scheme that significantly boosts the overall performance. Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.
Abstract:A wide variety of methods have been developed to enable lifelong learning in conventional deep neural networks. However, to succeed, these methods require a `batch' of samples to be available and visited multiple times during training. While this works well in a static setting, these methods continue to suffer in a more realistic situation where data arrives in \emph{online streaming manner}. We empirically demonstrate that the performance of current approaches degrades if the input is obtained as a stream of data with the following restrictions: $(i)$ each instance comes one at a time and can be seen only once, and $(ii)$ the input data violates the i.i.d assumption, i.e., there can be a class-based correlation. We propose a novel approach (CIOSL) for the class-incremental learning in an \emph{online streaming setting} to address these challenges. The proposed approach leverages implicit and explicit dual weight regularization and experience replay. The implicit regularization is leveraged via the knowledge distillation, while the explicit regularization incorporates a novel approach for parameter regularization by learning the joint distribution of the buffer replay and the current sample. Also, we propose an efficient online memory replay and replacement buffer strategy that significantly boosts the model's performance. Extensive experiments and ablation on challenging datasets show the efficacy of the proposed method.
Abstract:We present a variational inference (VI) framework that unifies and leverages sequential Monte-Carlo (particle filtering) with \emph{approximate} rejection sampling to construct a flexible family of variational distributions. Furthermore, we augment this approach with a resampling step via Bernoulli race, a generalization of a Bernoulli factory, to obtain a low-variance estimator of the marginal likelihood. Our framework, Variational Rejection Particle Filtering (VRPF), leads to novel variational bounds on the marginal likelihood, which can be optimized efficiently with respect to the variational parameters and generalizes several existing approaches in the VI literature. We also present theoretical properties of the variational bound and demonstrate experiments on various models of sequential data, such as the Gaussian state-space model and variational recurrent neural net (VRNN), on which VRPF outperforms various existing state-of-the-art VI methods.