Abstract:This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL) that addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks. HPO leverages maximum entropy reinforcement learning combined with token-level Direct Preference Optimization (DPO), eliminating the need for pre-trained reference policies that are typically unavailable in challenging robotic scenarios. Mathematically, we formulate HRL as a bi-level optimization problem and transform it into a primitive-regularized DPO formulation, ensuring feasible subgoal generation and avoiding degenerate solutions. Extensive experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines. Furthermore, ablation studies validate our design choices, and quantitative analyses confirm the ability of HPO to mitigate non-stationarity and infeasible subgoal generation issues in HRL.
Abstract:Diffusion-based models demonstrate impressive generation capabilities. However, they also have a massive number of parameters, resulting in enormous model sizes, thus making them unsuitable for deployment on resource-constraint devices. Block-wise generation can be a promising alternative for designing compact-sized (parameter-efficient) deep generative models since the model can generate one block at a time instead of generating the whole image at once. However, block-wise generation is also considerably challenging because ensuring coherence across generated blocks can be non-trivial. To this end, we design a retrieval-augmented generation (RAG) approach and leverage the corresponding blocks of the images retrieved by the RAG module to condition the training and generation stages of a block-wise denoising diffusion model. Our conditioning schemes ensure coherence across the different blocks during training and, consequently, during generation. While we showcase our approach using the latent diffusion model (LDM) as the base model, it can be used with other variants of denoising diffusion models. We validate the solution of the coherence problem through the proposed approach by reporting substantive experiments to demonstrate our approach's effectiveness in compact model size and excellent generation quality.
Abstract:Semantic segmentation has become an important task in computer vision with the growth of self-driving cars, medical image segmentation, etc. Although current models provide excellent results, they are still far from perfect and while there has been significant work in trying to improve the performance, both with respect to accuracy and speed of segmentation, there has been little work which analyses the failure cases of such systems. In this work, we aim to provide an analysis of how segmentation fails across different models and consider the question of whether these can be predicted reasonably at test time. To do so, we explore existing uncertainty-based metrics and see how well they correlate with misclassifications, allowing us to define the degree of trust we put in the output of our prediction models. Through several experiments on three different models across three datasets, we show that simple measures such as entropy can be used to capture misclassification with high recall rates.
Abstract:Developing interactive systems that leverage natural language instructions to solve complex robotic control tasks has been a long-desired goal in the robotics community. Large Language Models (LLMs) have demonstrated exceptional abilities in handling complex tasks, including logical reasoning, in-context learning, and code generation. However, predicting low-level robotic actions using LLMs poses significant challenges. Additionally, the complexity of such tasks usually demands the acquisition of policies to execute diverse subtasks and combine them to attain the ultimate objective. Hierarchical Reinforcement Learning (HRL) is an elegant approach for solving such tasks, which provides the intuitive benefits of temporal abstraction and improved exploration. However, HRL faces the recurring issue of non-stationarity due to unstable lower primitive behaviour. In this work, we propose LGR2, a novel HRL framework that leverages language instructions to generate a stationary reward function for the higher-level policy. Since the language-guided reward is unaffected by the lower primitive behaviour, LGR2 mitigates non-stationarity and is thus an elegant method for leveraging language instructions to solve robotic control tasks. To analyze the efficacy of our approach, we perform empirical analysis and demonstrate that LGR2 effectively alleviates non-stationarity in HRL. Our approach attains success rates exceeding 70$\%$ in challenging, sparse-reward robotic navigation and manipulation environments where the baselines fail to achieve any significant progress. Additionally, we conduct real-world robotic manipulation experiments and demonstrate that CRISP shows impressive generalization in real-world scenarios.
Abstract:In this work, we introduce PIPER: Primitive-Informed Preference-based Hierarchical reinforcement learning via Hindsight Relabeling, a novel approach that leverages preference-based learning to learn a reward model, and subsequently uses this reward model to relabel higher-level replay buffers. Since this reward is unaffected by lower primitive behavior, our relabeling-based approach is able to mitigate non-stationarity, which is common in existing hierarchical approaches, and demonstrates impressive performance across a range of challenging sparse-reward tasks. Since obtaining human feedback is typically impractical, we propose to replace the human-in-the-loop approach with our primitive-in-the-loop approach, which generates feedback using sparse rewards provided by the environment. Moreover, in order to prevent infeasible subgoal prediction and avoid degenerate solutions, we propose primitive-informed regularization that conditions higher-level policies to generate feasible subgoals for lower-level policies. We perform extensive experiments to show that PIPER mitigates non-stationarity in hierarchical reinforcement learning and achieves greater than 50$\%$ success rates in challenging, sparse-reward robotic environments, where most other baselines fail to achieve any significant progress.
Abstract:Transformers used in vision have been investigated through diverse architectures - ViT, PVT, and Swin. These have worked to improve the attention mechanism and make it more efficient. Differently, the need for including local information was felt, leading to incorporating convolutions in transformers such as CPVT and CvT. Global information is captured using a complex Fourier basis to achieve global token mixing through various methods, such as AFNO, GFNet, and Spectformer. We advocate combining three diverse views of data - local, global, and long-range dependence. We also investigate the simplest global representation using only the real domain spectral representation - obtained through the Hartley transform. We use a convolutional operator in the initial layers to capture local information. Through these two contributions, we are able to optimize and obtain a spectral convolution transformer (SCT) that provides improved performance over the state-of-the-art methods while reducing the number of parameters. Through extensive experiments, we show that SCT-C-small gives state-of-the-art performance on the ImageNet dataset and reaches 84.5\% top-1 accuracy, while SCT-C-Large reaches 85.9\% and SCT-C-Huge reaches 86.4\%. We evaluate SCT on transfer learning on datasets such as CIFAR-10, CIFAR-100, Oxford Flower, and Stanford Car. We also evaluate SCT on downstream tasks i.e. instance segmentation on the MSCOCO dataset. The project page is available on this webpage.\url{https://github.com/badripatro/sct}
Abstract:CLIP is a widely used foundational vision-language model that is used for zero-shot image recognition and other image-text alignment tasks. We demonstrate that CLIP is vulnerable to change in image quality under compression. This surprising result is further analysed using an attribution method-Integrated Gradients. Using this attribution method, we are able to better understand both quantitatively and qualitatively exactly the nature in which the compression affects the zero-shot recognition accuracy of this model. We evaluate this extensively on CIFAR-10 and STL-10. Our work provides the basis to understand this vulnerability of CLIP and can help us develop more effective methods to improve the robustness of CLIP and other vision-language models.
Abstract:Lifelong learning, also referred to as continual learning, is the problem of training an AI agent continuously while also preventing it from forgetting its previously acquired knowledge. Most of the existing methods primarily focus on lifelong learning within a static environment and lack the ability to mitigate forgetting in a quickly-changing dynamic environment. Streaming lifelong learning is a challenging setting of lifelong learning with the goal of continuous learning in a dynamic non-stationary environment without forgetting. We introduce a novel approach to lifelong learning, which is streaming, requires a single pass over the data, can learn in a class-incremental manner, and can be evaluated on-the-fly (anytime inference). To accomplish these, we propose virtual gradients for continual representation learning to prevent catastrophic forgetting and leverage an exponential-moving-average-based semantic memory to further enhance performance. Extensive experiments on diverse datasets demonstrate our method's efficacy and superior performance over existing methods.
Abstract:Vision transformers have been applied successfully for image recognition tasks. There have been either multi-headed self-attention based (ViT \cite{dosovitskiy2020image}, DeIT, \cite{touvron2021training}) similar to the original work in textual models or more recently based on spectral layers (Fnet\cite{lee2021fnet}, GFNet\cite{rao2021global}, AFNO\cite{guibas2021efficient}). We hypothesize that both spectral and multi-headed attention plays a major role. We investigate this hypothesis through this work and observe that indeed combining spectral and multi-headed attention layers provides a better transformer architecture. We thus propose the novel Spectformer architecture for transformers that combines spectral and multi-headed attention layers. We believe that the resulting representation allows the transformer to capture the feature representation appropriately and it yields improved performance over other transformer representations. For instance, it improves the top-1 accuracy by 2\% on ImageNet compared to both GFNet-H and LiT. SpectFormer-S reaches 84.25\% top-1 accuracy on ImageNet-1K (state of the art for small version). Further, Spectformer-L achieves 85.7\% that is the state of the art for the comparable base version of the transformers. We further ensure that we obtain reasonable results in other scenarios such as transfer learning on standard datasets such as CIFAR-10, CIFAR-100, Oxford-IIIT-flower, and Standford Car datasets. We then investigate its use in downstream tasks such of object detection and instance segmentation on the MS-COCO dataset and observe that Spectformer shows consistent performance that is comparable to the best backbones and can be further optimized and improved. Hence, we believe that combined spectral and attention layers are what are needed for vision transformers.
Abstract:Despite rapid advancements in lifelong learning (LLL) research, a large body of research mainly focuses on improving the performance in the existing \textit{static} continual learning (CL) setups. These methods lack the ability to succeed in a rapidly changing \textit{dynamic} environment, where an AI agent needs to quickly learn new instances in a `single pass' from the non-i.i.d (also possibly temporally contiguous/coherent) data streams without suffering from catastrophic forgetting. For practical applicability, we propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment. To address this challenging setup and various evaluation protocols, we propose a Bayesian framework, that enables fast parameter update, given a single training example, and enables any-time inference. We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further. We further propose an effective method that efficiently selects a subset of samples for online memory rehearsal and employs a new replay buffer management scheme that significantly boosts the overall performance. Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.