University of Bath
Abstract:Advances in artificial intelligence (AI) have great potential to help address societal challenges that are both collective in nature and present at national or trans-national scale. Pressing challenges in healthcare, finance, infrastructure and sustainability, for instance, might all be productively addressed by leveraging and amplifying AI for national-scale collective intelligence. The development and deployment of this kind of AI faces distinctive challenges, both technical and socio-technical. Here, a research strategy for mobilising inter-disciplinary research to address these challenges is detailed and some of the key issues that must be faced are outlined.
Abstract:CLIP is a widely used foundational vision-language model that is used for zero-shot image recognition and other image-text alignment tasks. We demonstrate that CLIP is vulnerable to change in image quality under compression. This surprising result is further analysed using an attribution method-Integrated Gradients. Using this attribution method, we are able to better understand both quantitatively and qualitatively exactly the nature in which the compression affects the zero-shot recognition accuracy of this model. We evaluate this extensively on CIFAR-10 and STL-10. Our work provides the basis to understand this vulnerability of CLIP and can help us develop more effective methods to improve the robustness of CLIP and other vision-language models.
Abstract:Federated learning of deep learning models for supervised tasks, e.g. image classification and segmentation, has found many applications: for example in human-in-the-loop tasks such as film post-production where it enables sharing of domain expertise of human artists in an efficient and effective fashion. In many such applications, we need to protect the training data from being leaked when gradients are shared in the training process due to IP or privacy concerns. Recent works have demonstrated that it is possible to reconstruct the training data from gradients for an image-classification model when its architecture is known. However, there is still an incomplete theoretical understanding of the efficacy and failure of such attacks. In this paper, we analyse the source of training-data leakage from gradients. We formulate the problem of training data reconstruction as solving an optimisation problem iteratively for each layer. The layer-wise objective function is primarily defined by weights and gradients from the current layer as well as the output from the reconstruction of the subsequent layer, but it might also involve a 'pull-back' constraint from the preceding layer. Training data can be reconstructed when we solve the problem backward from the output of the network through each layer. Based on this formulation, we are able to attribute the potential leakage of the training data in a deep network to its architecture. We also propose a metric to measure the level of security of a deep learning model against gradient-based attacks on the training data.