University of Bristol
Abstract:Advances in artificial intelligence (AI) have great potential to help address societal challenges that are both collective in nature and present at national or trans-national scale. Pressing challenges in healthcare, finance, infrastructure and sustainability, for instance, might all be productively addressed by leveraging and amplifying AI for national-scale collective intelligence. The development and deployment of this kind of AI faces distinctive challenges, both technical and socio-technical. Here, a research strategy for mobilising inter-disciplinary research to address these challenges is detailed and some of the key issues that must be faced are outlined.
Abstract:Contact between languages has the potential to transmit vocabulary and other language features; however, this does not always happen. Here, an iterated learning model is used to examine, in a simple way, the resistance of languages to change during language contact. Iterated learning models are agent-based models of language change, they demonstrate that languages that are expressive and compositional arise spontaneously as a consequence of a language transmission bottleneck. A recently introduced type of iterated learning model, the Semi-Supervised ILM is used to simulate language contact. These simulations do not include many of the complex factors involved in language contact and do not model a population of speakers; nonetheless the model demonstrates that the dynamics which lead languages in the model to spontaneously become expressive and compositional, also cause a language to maintain its core traits even after mixing with another language.
Abstract:The iterated learning model is an agent-based model of language change in which language is transmitted from a tutor to a pupil which itself becomes a tutor to a new pupil, and so on. Languages that are stable, expressive, and compositional arise spontaneously as a consequence of a language transmission bottleneck. Previous models have implemented an agent's mapping from signals to meanings using an artificial neural network decoder, but have relied on an unrealistic and computationally expensive process of obversion to implement the associated encoder, mapping from meanings to signals. Here, a new model is presented in which both decoder and encoder are neural networks, trained separately through supervised learning, and trained together through unsupervised learning in the form of an autoencoder. This avoids the substantial computational burden entailed in obversion and introduces a mixture of supervised and unsupervised learning as observed during human development.