Abstract:Continual Learning (CL) involves training a machine learning model in a sequential manner to learn new information while retaining previously learned tasks without the presence of previous training data. Although there has been significant interest in CL, most recent CL approaches in computer vision have focused on convolutional architectures only. However, with the recent success of vision transformers, there is a need to explore their potential for CL. Although there have been some recent CL approaches for vision transformers, they either store training instances of previous tasks or require a task identifier during test time, which can be limiting. This paper proposes a new exemplar-free approach for class/task incremental learning called ConTraCon, which does not require task-id to be explicitly present during inference and avoids the need for storing previous training instances. The proposed approach leverages the transformer architecture and involves re-weighting the key, query, and value weights of the multi-head self-attention layers of a transformer trained on a similar task. The re-weighting is done using convolution, which enables the approach to maintain low parameter requirements per task. Additionally, an image augmentation-based entropic task identification approach is used to predict tasks without requiring task-ids during inference. Experiments on four benchmark datasets demonstrate that the proposed approach outperforms several competitive approaches while requiring fewer parameters.
Abstract:Despite rapid advancements in lifelong learning (LLL) research, a large body of research mainly focuses on improving the performance in the existing \textit{static} continual learning (CL) setups. These methods lack the ability to succeed in a rapidly changing \textit{dynamic} environment, where an AI agent needs to quickly learn new instances in a `single pass' from the non-i.i.d (also possibly temporally contiguous/coherent) data streams without suffering from catastrophic forgetting. For practical applicability, we propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment. To address this challenging setup and various evaluation protocols, we propose a Bayesian framework, that enables fast parameter update, given a single training example, and enables any-time inference. We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further. We further propose an effective method that efficiently selects a subset of samples for online memory rehearsal and employs a new replay buffer management scheme that significantly boosts the overall performance. Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.
Abstract:Weight pruning is among the most popular approaches for compressing deep convolutional neural networks. Recent work suggests that in a randomly initialized deep neural network, there exist sparse subnetworks that achieve performance comparable to the original network. Unfortunately, finding these subnetworks involves iterative stages of training and pruning, which can be computationally expensive. We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter. This leads to improved efficiency of convolutional architectures compared to existing methods that perform pruning at initialization. We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in ``efficient architectures.'' Extensive experiments on well-known CNN models and datasets show the effectiveness of the proposed method. Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
Abstract:A wide variety of methods have been developed to enable lifelong learning in conventional deep neural networks. However, to succeed, these methods require a `batch' of samples to be available and visited multiple times during training. While this works well in a static setting, these methods continue to suffer in a more realistic situation where data arrives in \emph{online streaming manner}. We empirically demonstrate that the performance of current approaches degrades if the input is obtained as a stream of data with the following restrictions: $(i)$ each instance comes one at a time and can be seen only once, and $(ii)$ the input data violates the i.i.d assumption, i.e., there can be a class-based correlation. We propose a novel approach (CIOSL) for the class-incremental learning in an \emph{online streaming setting} to address these challenges. The proposed approach leverages implicit and explicit dual weight regularization and experience replay. The implicit regularization is leveraged via the knowledge distillation, while the explicit regularization incorporates a novel approach for parameter regularization by learning the joint distribution of the buffer replay and the current sample. Also, we propose an efficient online memory replay and replacement buffer strategy that significantly boosts the model's performance. Extensive experiments and ablation on challenging datasets show the efficacy of the proposed method.
Abstract:Learning from data sequentially arriving, possibly in a non i.i.d. way, with changing task distribution over time is called continual learning. Much of the work thus far in continual learning focuses on supervised learning and some recent works on unsupervised learning. In many domains, each task contains a mix of labelled (typically very few) and unlabelled (typically plenty) training examples, which necessitates a semi-supervised learning approach. To address this in a continual learning setting, we propose a framework for semi-supervised continual learning called Meta-Consolidation for Continual Semi-Supervised Learning (MCSSL). Our framework has a hypernetwork that learns the meta-distribution that generates the weights of a semi-supervised auxiliary classifier generative adversarial network $(\textit{Semi-ACGAN})$ as the base network. We consolidate the knowledge of sequential tasks in the hypernetwork, and the base network learns the semi-supervised learning task. Further, we present $\textit{Semi-Split CIFAR-10}$, a new benchmark for continual semi-supervised learning, obtained by modifying the $\textit{Split CIFAR-10}$ dataset, in which the tasks with labelled and unlabelled data arrive sequentially. Our proposed model yields significant improvements in the continual semi-supervised learning setting. We compare the performance of several existing continual learning approaches on the proposed continual semi-supervised learning benchmark of the Semi-Split CIFAR-10 dataset.
Abstract:We propose a novel approach for class incremental online learning in a limited data setting. This problem setting is challenging because of the following constraints: (1) Classes are given incrementally, which necessitates a class incremental learning approach; (2) Data for each class is given in an online fashion, i.e., each training example is seen only once during training; (3) Each class has very few training examples; and (4) We do not use or assume access to any replay/memory to store data from previous classes. Therefore, in this setting, we have to handle twofold problems of catastrophic forgetting and overfitting. In our approach, we learn robust representations that are generalizable across tasks without suffering from the problems of catastrophic forgetting and overfitting to accommodate future classes with limited samples. Our proposed method leverages the meta-learning framework with knowledge consolidation. The meta-learning framework helps the model for rapid learning when samples appear in an online fashion. Simultaneously, knowledge consolidation helps to learn a robust representation against forgetting under online updates to facilitate future learning. Our approach significantly outperforms other methods on several benchmarks.
Abstract:As neural networks are increasingly being applied to real-world applications, mechanisms to address distributional shift and sequential task learning without forgetting are critical. Methods incorporating network expansion have shown promise by naturally adding model capacity for learning new tasks while simultaneously avoiding catastrophic forgetting. However, the growth in the number of additional parameters of many of these types of methods can be computationally expensive at larger scales, at times prohibitively so. Instead, we propose a simple task-specific feature map transformation strategy for continual learning, which we call Efficient Feature Transformations (EFTs). These EFTs provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture. We further propose a feature distance maximization strategy, which significantly improves task prediction in class incremental settings, without needing expensive generative models. We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative (LSUN, CUB-200, Cats) sequences of tasks. Even with low single-digit parameter growth rates, EFTs can outperform many other continual learning methods in a wide range of settings.
Abstract:We present a continual learning approach for generative adversarial networks (GANs), by designing and leveraging parameter-efficient feature map transformations. Our approach is based on learning a set of global and task-specific parameters. The global parameters are fixed across tasks whereas the task specific parameters act as local adapters for each task, and help in efficiently transforming the previous task's feature map to the new task's feature map. Moreover, we propose an element-wise residual bias in the transformed feature space which highly stabilizes GAN training. In contrast to the recent approaches for continual GANs, we do not rely on memory replay, regularization towards previous tasks' parameters, or expensive weight transformations. Through extensive experiments on challenging and diverse datasets, we show that the feature-map transformation based approach outperforms state-of-the-art continual GANs methods, with substantially fewer parameters, and also generates high-quality samples that can be used in generative replay based continual learning of discriminative tasks.
Abstract:Zero-shot learning (ZSL) has been shown to be a promising approach to generalizing a model to categories unseen during training by leveraging class attributes, but challenges still remain. Recently, methods using generative models to combat bias towards classes seen during training have pushed the state of the art of ZSL, but these generative models can be slow or computationally expensive to train. Additionally, while many previous ZSL methods assume a one-time adaptation to unseen classes, in reality, the world is always changing, necessitating a constant adjustment for deployed models. Models unprepared to handle a sequential stream of data are likely to experience catastrophic forgetting. We propose a meta-continual zero-shot learning (MCZSL) approach to address both these issues. In particular, by pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results while being able to train our models substantially faster ($>100\times$) than expensive generative-based approaches. We demonstrate this by performing experiments on five standard ZSL datasets (CUB, aPY, AWA1, AWA2 and SUN) in both generalized zero-shot learning and generalized continual zero-shot learning settings.
Abstract:We present a meta-learning based generative model for zero-shot learning (ZSL) towards a challenging setting when the number of training examples from each \emph{seen} class is very few. This setup contrasts with the conventional ZSL approaches, where training typically assumes the availability of a sufficiently large number of training examples from each of the seen classes. The proposed approach leverages meta-learning to train a deep generative model that integrates variational autoencoder and generative adversarial networks. We propose a novel task distribution where meta-train and meta-validation classes are disjoint to simulate the ZSL behaviour in training. Once trained, the model can generate synthetic examples from seen and unseen classes. Synthesize samples can then be used to train the ZSL framework in a supervised manner. The meta-learner enables our model to generates high-fidelity samples using only a small number of training examples from seen classes. We conduct extensive experiments and ablation studies on four benchmark datasets of ZSL and observe that the proposed model outperforms state-of-the-art approaches by a significant margin when the number of examples per seen class is very small.