Abstract:Numerous methods have been proposed to adapt a pre-trained foundational CLIP model for few-shot classification. As CLIP is trained on a large corpus, it generalises well through adaptation to few-shot classification. In this work, we analyse the intra-modal overlap in image space in terms of embedding representation. Our analysis shows that, due to contrastive learning, embeddings from CLIP model exhibit high cosine similarity distribution overlap in the image space between paired and unpaired examples affecting the performance of few-shot training-free classification methods which rely on similarity in the image space for their predictions. To tackle intra-modal overlap we propose to train a lightweight adapter on a generic set of samples from the Google Open Images dataset demonstrating that this improves accuracy for few-shot training-free classification. We validate our contribution through extensive empirical analysis and demonstrate that reducing the intra-modal overlap leads to a) improved performance on a number of standard datasets, b) increased robustness to distribution shift and c) higher feature variance rendering the features more discriminative for downstream tasks.
Abstract:Speech-driven facial animation is important for many applications including TV, film, video games, telecommunication and AR/VR. Recently, transformers have been shown to be extremely effective for this task. However, we identify two issues with the existing transformer-based models. Firstly, they are difficult to adapt to new personalised speaking styles and secondly, they are slow to run for long sentences due to the quadratic complexity of the transformer. We propose TalkLoRA to address both of these issues. TalkLoRA uses Low-Rank Adaptation to effectively and efficiently adapt to new speaking styles, even with limited data. It does this by training an adaptor with a small number of parameters for each subject. We also utilise a chunking strategy to reduce the complexity of the underlying transformer, allowing for long sentences at inference time. TalkLoRA can be applied to any transformer-based speech-driven animation method. We perform extensive experiments to show that TalkLoRA archives state-of-the-art style adaptation and that it allows for an order-of-complexity reduction in inference times without sacrificing quality. We also investigate and provide insights into the hyperparameter selection for LoRA fine-tuning of speech-driven facial animation models.
Abstract:In this paper, we introduce a novel approach to address the task of synthesizing speech from silent videos of any in-the-wild speaker solely based on lip movements. The traditional approach of directly generating speech from lip videos faces the challenge of not being able to learn a robust language model from speech alone, resulting in unsatisfactory outcomes. To overcome this issue, we propose incorporating noisy text supervision using a state-of-the-art lip-to-text network that instills language information into our model. The noisy text is generated using a pre-trained lip-to-text model, enabling our approach to work without text annotations during inference. We design a visual text-to-speech network that utilizes the visual stream to generate accurate speech, which is in-sync with the silent input video. We perform extensive experiments and ablation studies, demonstrating our approach's superiority over the current state-of-the-art methods on various benchmark datasets. Further, we demonstrate an essential practical application of our method in assistive technology by generating speech for an ALS patient who has lost the voice but can make mouth movements. Our demo video, code, and additional details can be found at \url{http://cvit.iiit.ac.in/research/projects/cvit-projects/ms-l2s-itw}.
Abstract:Visual dubbing is the process of generating lip motions of an actor in a video to synchronise with given audio. Recent advances have made progress towards this goal but have not been able to produce an approach suitable for mass adoption. Existing methods are split into either person-generic or person-specific models. Person-specific models produce results almost indistinguishable from reality but rely on long training times using large single-person datasets. Person-generic works have allowed for the visual dubbing of any video to any audio without further training, but these fail to capture the person-specific nuances and often suffer from visual artefacts. Our method, based on data-efficient neural rendering priors, overcomes the limitations of existing approaches. Our pipeline consists of learning a deferred neural rendering prior network and actor-specific adaptation using neural textures. This method allows for $\textbf{high-quality visual dubbing with just a few seconds of data}$, that enables video dubbing for any actor - from A-list celebrities to background actors. We show that we achieve state-of-the-art in terms of $\textbf{visual quality}$ and $\textbf{recognisability}$ both quantitatively, and qualitatively through two user studies. Our prior learning and adaptation method $\textbf{generalises to limited data}$ better and is more $\textbf{scalable}$ than existing person-specific models. Our experiments on real-world, limited data scenarios find that our model is preferred over all others. The project page may be found at https://dubbingforeveryone.github.io/
Abstract:The ability to accurately capture and express emotions is a critical aspect of creating believable characters in video games and other forms of entertainment. Traditionally, this animation has been achieved with artistic effort or performance capture, both requiring costs in time and labor. More recently, audio-driven models have seen success, however, these often lack expressiveness in areas not correlated to the audio signal. In this paper, we present a novel approach to facial animation by taking existing animations and allowing for the modification of style characteristics. Specifically, we explore the use of a StarGAN to enable the conversion of 3D facial animations into different emotions and person-specific styles. We are able to maintain the lip-sync of the animations with this method thanks to the use of a novel viseme-preserving loss.
Abstract:We present READ Avatars, a 3D-based approach for generating 2D avatars that are driven by audio input with direct and granular control over the emotion. Previous methods are unable to achieve realistic animation due to the many-to-many nature of audio to expression mappings. We alleviate this issue by introducing an adversarial loss in the audio-to-expression generation process. This removes the smoothing effect of regression-based models and helps to improve the realism and expressiveness of the generated avatars. We note furthermore, that audio should be directly utilized when generating mouth interiors and that other 3D-based methods do not attempt this. We address this with audio-conditioned neural textures, which are resolution-independent. To evaluate the performance of our method, we perform quantitative and qualitative experiments, including a user study. We also propose a new metric for comparing how well an actor's emotion is reconstructed in the generated avatar. Our results show that our approach outperforms state of the art audio-driven avatar generation methods across several metrics. A demo video can be found at \url{https://youtu.be/QSyMl3vV0pA}
Abstract:This work proposes a novel method to generate realistic talking head videos using audio and visual streams. We animate a source image by transferring head motion from a driving video using a dense motion field generated using learnable keypoints. We improve the quality of lip sync using audio as an additional input, helping the network to attend to the mouth region. We use additional priors using face segmentation and face mesh to improve the structure of the reconstructed faces. Finally, we improve the visual quality of the generations by incorporating a carefully designed identity-aware generator module. The identity-aware generator takes the source image and the warped motion features as input to generate a high-quality output with fine-grained details. Our method produces state-of-the-art results and generalizes well to unseen faces, languages, and voices. We comprehensively evaluate our approach using multiple metrics and outperforming the current techniques both qualitative and quantitatively. Our work opens up several applications, including enabling low bandwidth video calls. We release a demo video and additional information at http://cvit.iiit.ac.in/research/projects/cvit-projects/avfr.
Abstract:Many people with some form of hearing loss consider lipreading as their primary mode of day-to-day communication. However, finding resources to learn or improve one's lipreading skills can be challenging. This is further exacerbated in COVID$19$ pandemic due to restrictions on direct interactions with peers and speech therapists. Today, online MOOCs platforms like Coursera and Udemy have become the most effective form of training for many kinds of skill development. However, online lipreading resources are scarce as creating such resources is an extensive process needing months of manual effort to record hired actors. Because of the manual pipeline, such platforms are also limited in the vocabulary, supported languages, accents, and speakers, and have a high usage cost. In this work, we investigate the possibility of replacing real human talking videos with synthetically generated videos. Synthetic data can be used to easily incorporate larger vocabularies, variations in accent, and even local languages, and many speakers. We propose an end-to-end automated pipeline to develop such a platform using state-of-the-art talking heading video generator networks, text-to-speech models, and computer vision techniques. We then perform an extensive human evaluation using carefully thought out lipreading exercises to validate the quality of our designed platform against the existing lipreading platforms. Our studies concretely point towards the potential of our approach for the development of a large-scale lipreading MOOCs platform that can impact millions of people with hearing loss.
Abstract:Doubles play an indispensable role in the movie industry. They take the place of the actors in dangerous stunt scenes or in scenes where the same actor plays multiple characters. The double's face is later replaced with the actor's face and expressions manually using expensive CGI technology, costing millions of dollars and taking months to complete. An automated, inexpensive, and fast way can be to use face-swapping techniques that aim to swap an identity from a source face video (or an image) to a target face video. However, such methods can not preserve the source expressions of the actor important for the scene's context. % essential for the scene. % that are essential in cinemas. To tackle this challenge, we introduce video-to-video (V2V) face-swapping, a novel task of face-swapping that can preserve (1) the identity and expressions of the source (actor) face video and (2) the background and pose of the target (double) video. We propose FaceOff, a V2V face-swapping system that operates by learning a robust blending operation to merge two face videos following the constraints above. It first reduces the videos to a quantized latent space and then blends them in the reduced space. FaceOff is trained in a self-supervised manner and robustly tackles the non-trivial challenges of V2V face-swapping. As shown in the experimental section, FaceOff significantly outperforms alternate approaches qualitatively and quantitatively.
Abstract:Lipreading or visually recognizing speech from the mouth movements of a speaker is a challenging and mentally taxing task. Unfortunately, multiple medical conditions force people to depend on this skill in their day-to-day lives for essential communication. Patients suffering from Amyotrophic Lateral Sclerosis (ALS) often lose muscle control, consequently their ability to generate speech and communicate via lip movements. Existing large datasets do not focus on medical patients or curate personalized vocabulary relevant to an individual. Collecting a large-scale dataset of a patient, needed to train mod-ern data-hungry deep learning models is, however, extremely challenging. In this work, we propose a personalized network to lipread an ALS patient using only one-shot examples. We depend on synthetically generated lip movements to augment the one-shot scenario. A Variational Encoder based domain adaptation technique is used to bridge the real-synthetic domain gap. Our approach significantly improves and achieves high top-5accuracy with 83.2% accuracy compared to 62.6% achieved by comparable methods for the patient. Apart from evaluating our approach on the ALS patient, we also extend it to people with hearing impairment relying extensively on lip movements to communicate.