Abstract:Pedestrian trajectory prediction is crucial for several applications such as robotics and self-driving vehicles. Significant progress has been made in the past decade thanks to the availability of pedestrian trajectory datasets, which enable trajectory prediction methods to learn from pedestrians' past movements and predict future trajectories. However, these datasets and methods typically assume that the observed trajectory sequence is complete, ignoring real-world issues such as sensor failure, occlusion, and limited fields of view that can result in missing values in observed trajectories. To address this challenge, we present TrajImpute, a pedestrian trajectory prediction dataset that simulates missing coordinates in the observed trajectory, enhancing real-world applicability. TrajImpute maintains a uniform distribution of missing data within the observed trajectories. In this work, we comprehensively examine several imputation methods to reconstruct the missing coordinates and benchmark them for imputing pedestrian trajectories. Furthermore, we provide a thorough analysis of recent trajectory prediction methods and evaluate the performance of these models on the imputed trajectories. Our experimental evaluation of the imputation and trajectory prediction methods offers several valuable insights. Our dataset provides a foundational resource for future research on imputation-aware pedestrian trajectory prediction, potentially accelerating the deployment of these methods in real-world applications. Publicly accessible links to the datasets and code files are available at https://github.com/Pranav-chib/TrajImpute.
Abstract:Traditional supervised 3D medical image segmentation models need voxel-level annotations, which require huge human effort, time, and cost. Semi-supervised learning (SSL) addresses this limitation of supervised learning by facilitating learning with a limited annotated and larger amount of unannotated training samples. However, state-of-the-art SSL models still struggle to fully exploit the potential of learning from unannotated samples. To facilitate effective learning from unannotated data, we introduce LLM-SegNet, which exploits a large language model (LLM) to integrate task-specific knowledge into our co-training framework. This knowledge aids the model in comprehensively understanding the features of the region of interest (ROI), ultimately leading to more efficient segmentation. Additionally, to further reduce erroneous segmentation, we propose a Unified Segmentation loss function. This loss function reduces erroneous segmentation by not only prioritizing regions where the model is confident in predicting between foreground or background pixels but also effectively addressing areas where the model lacks high confidence in predictions. Experiments on publicly available Left Atrium, Pancreas-CT, and Brats-19 datasets demonstrate the superior performance of LLM-SegNet compared to the state-of-the-art. Furthermore, we conducted several ablation studies to demonstrate the effectiveness of various modules and loss functions leveraged by LLM-SegNet.
Abstract:This paper presents a novel mid-wave infrared (MWIR) small target detection dataset (MWIRSTD) comprising 14 video sequences containing approximately 1053 images with annotated targets of three distinct classes of small objects. Captured using cooled MWIR imagers, the dataset offers a unique opportunity for researchers to develop and evaluate state-of-the-art methods for small object detection in realistic MWIR scenes. Unlike existing datasets, which primarily consist of uncooled thermal images or synthetic data with targets superimposed onto the background or vice versa, MWIRSTD provides authentic MWIR data with diverse targets and environments. Extensive experiments on various traditional methods and deep learning-based techniques for small target detection are performed on the proposed dataset, providing valuable insights into their efficacy. The dataset and code are available at https://github.com/avinres/MWIRSTD.
Abstract:Accurately predicting future pedestrian trajectories is crucial across various domains. Due to the uncertainty in future pedestrian trajectories, it is important to learn complex spatio-temporal representations in multi-agent scenarios. To address this, we propose a novel Cross-Correction Framework (CCF) to learn spatio-temporal representations of pedestrian trajectories better. Our framework consists of two trajectory prediction models, known as subnets, which share the same architecture and are trained with both cross-correction loss and trajectory prediction loss. Cross-correction leverages the learning from both subnets and enables them to refine their underlying representations of trajectories through a mutual correction mechanism. Specifically, we use the cross-correction loss to learn how to correct each other through an inter-subnet interaction. To induce diverse learning among the subnets, we use the transformed observed trajectories produced by a neural network as input to one subnet and the original observed trajectories as input to the other subnet. We utilize transformer-based encoder-decoder architecture for each subnet to capture motion and social interaction among pedestrians. The encoder of the transformer captures motion patterns in trajectories, while the decoder focuses on pedestrian interactions with neighbors. Each subnet performs the primary task of predicting future trajectories (a regression task) along with the secondary task of classifying the predicted trajectories (a classification task). Extensive experiments on real-world benchmark datasets such as ETH-UCY and SDD demonstrate the efficacy of our proposed framework, CCF, in precisely predicting pedestrian future trajectories. We also conducted several ablation experiments to demonstrate the effectiveness of various modules and loss functions used in our approach.
Abstract:Deep learning models, particularly Convolutional Neural Networks (CNNs), have demonstrated exceptional performance in diagnosing skin diseases, often outperforming dermatologists. However, they have also unveiled biases linked to specific demographic traits, notably concerning diverse skin tones or gender, prompting concerns regarding fairness and limiting their widespread deployment. Researchers are actively working to ensure fairness in AI-based solutions, but existing methods incur an accuracy loss when striving for fairness. To solve this issue, we propose a `two-biased teachers' (i.e., biased on different sensitive attributes) based approach to transfer fair knowledge into the student network. Our approach mitigates biases present in the student network without harming its predictive accuracy. In fact, in most cases, our approach improves the accuracy of the baseline model. To achieve this goal, we developed a weighted loss function comprising biasing and debiasing loss terms. We surpassed available state-of-the-art approaches to attain fairness and also improved the accuracy at the same time. The proposed approach has been evaluated and validated on two dermatology datasets using standard accuracy and fairness evaluation measures. We will make source code publicly available to foster reproducibility and future research.
Abstract:Semi-supervised medical image segmentation has gained growing interest due to its ability to utilize unannotated data. The current state-of-the-art methods mostly rely on pseudo-labeling within a co-training framework. These methods depend on a single pseudo-label for training, but these labels are not as accurate as the ground truth of labeled data. Relying solely on one pseudo-label often results in suboptimal results. To this end, we propose a novel approach where multiple pseudo-labels for the same unannotated image are used to learn from the unlabeled data: the conventional fixed pseudo-label and the newly introduced dynamic pseudo-label. By incorporating multiple pseudo-labels for the same unannotated image into the co-training framework, our approach provides a more robust training approach that improves model performance and generalization capabilities. We validate our novel approach on three semi-supervised medical benchmark segmentation datasets, the Left Atrium dataset, the Pancreas-CT dataset, and the Brats-2019 dataset. Our approach significantly outperforms state-of-the-art methods over multiple medical benchmark segmentation datasets with different labeled data ratios. We also present several ablation experiments to demonstrate the effectiveness of various components used in our approach.
Abstract:Deep learning models have achieved remarkable success across diverse domains. However, the intricate nature of these models often impedes a clear understanding of their decision-making processes. This is where Explainable AI (XAI) becomes indispensable, offering intuitive explanations for model decisions. In this work, we propose a simple yet highly effective approach, ScoreCAM++, which introduces modifications to enhance the promising ScoreCAM method for visual explainability. Our proposed approach involves altering the normalization function within the activation layer utilized in ScoreCAM, resulting in significantly improved results compared to previous efforts. Additionally, we apply an activation function to the upsampled activation layers to enhance interpretability. This improvement is achieved by selectively gating lower-priority values within the activation layer. Through extensive experiments and qualitative comparisons, we demonstrate that ScoreCAM++ consistently achieves notably superior performance and fairness in interpreting the decision-making process compared to both ScoreCAM and previous methods.
Abstract:Accurate pedestrian trajectory prediction is crucial for various applications, and it requires a deep understanding of pedestrian motion patterns in dynamic environments. However, existing pedestrian trajectory prediction methods still need more exploration to fully leverage these motion patterns. This paper investigates the possibilities of using Large Language Models (LLMs) to improve pedestrian trajectory prediction tasks by inducing motion cues. We introduce LG-Traj, a novel approach incorporating LLMs to generate motion cues present in pedestrian past/observed trajectories. Our approach also incorporates motion cues present in pedestrian future trajectories by clustering future trajectories of training data using a mixture of Gaussians. These motion cues, along with pedestrian coordinates, facilitate a better understanding of the underlying representation. Furthermore, we utilize singular value decomposition to augment the observed trajectories, incorporating them into the model learning process to further enhance representation learning. Our method employs a transformer-based architecture comprising a motion encoder to model motion patterns and a social decoder to capture social interactions among pedestrians. We demonstrate the effectiveness of our approach on popular pedestrian trajectory prediction benchmarks, namely ETH-UCY and SDD, and present various ablation experiments to validate our approach.
Abstract:While there has been significant progress in object detection using conventional image processing and machine learning algorithms, exploring small and dim target detection in the IR domain is a relatively new area of study. The majority of small and dim target detection methods are derived from conventional object detection algorithms, albeit with some alterations. The task of detecting small and dim targets in IR imagery is complex. This is because these targets often need distinct features, the background is cluttered with unclear details, and the IR signatures of the scene can change over time due to fluctuations in thermodynamics. The primary objective of this review is to highlight the progress made in this field. This is the first review in the field of small and dim target detection in infrared imagery, encompassing various methodologies ranging from conventional image processing to cutting-edge deep learning-based approaches. The authors have also introduced a taxonomy of such approaches. There are two main types of approaches: methodologies using several frames for detection, and single-frame-based detection techniques. Single frame-based detection techniques encompass a diverse range of methods, spanning from traditional image processing-based approaches to more advanced deep learning methodologies. Our findings indicate that deep learning approaches perform better than traditional image processing-based approaches. In addition, a comprehensive compilation of various available datasets has also been provided. Furthermore, this review identifies the gaps and limitations in existing techniques, paving the way for future research and development in this area.
Abstract:The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.