Abstract:This paper presents a novel mid-wave infrared (MWIR) small target detection dataset (MWIRSTD) comprising 14 video sequences containing approximately 1053 images with annotated targets of three distinct classes of small objects. Captured using cooled MWIR imagers, the dataset offers a unique opportunity for researchers to develop and evaluate state-of-the-art methods for small object detection in realistic MWIR scenes. Unlike existing datasets, which primarily consist of uncooled thermal images or synthetic data with targets superimposed onto the background or vice versa, MWIRSTD provides authentic MWIR data with diverse targets and environments. Extensive experiments on various traditional methods and deep learning-based techniques for small target detection are performed on the proposed dataset, providing valuable insights into their efficacy. The dataset and code are available at https://github.com/avinres/MWIRSTD.
Abstract:In today's digital age, the internet is essential for communication and the sharing of information, creating a critical need for sophisticated data security measures to prevent unauthorized access and exploitation. Cryptography encrypts messages into a cipher text that is incomprehensible to unauthorized readers, thus safeguarding data during its transmission. Steganography, on the other hand, originates from the Greek term for "covered writing" and involves the art of hiding data within another medium, thereby facilitating covert communication by making the message invisible. This proposed approach takes advantage of the latest advancements in Artificial Intelligence (AI) and Deep Learning (DL), especially through the application of Generative Adversarial Networks (GANs), to improve upon traditional steganographic methods. By embedding encrypted data within another medium, our method ensures that the communication remains hidden from prying eyes. The application of GANs enables a smart, secure system that utilizes the inherent sensitivity of neural networks to slight alterations in data, enhancing the protection against detection. By merging the encryption techniques of cryptography with the hiding capabilities of steganography, and augmenting these with the strengths of AI, we introduce a comprehensive security system designed to maintain both the privacy and integrity of information. This system is crafted not just to prevent unauthorized access or modification of data, but also to keep the existence of the data hidden. This fusion of technologies tackles the core challenges of data security in the current era of open digital communication, presenting an advanced solution with the potential to transform the landscape of information security.
Abstract:While there has been significant progress in object detection using conventional image processing and machine learning algorithms, exploring small and dim target detection in the IR domain is a relatively new area of study. The majority of small and dim target detection methods are derived from conventional object detection algorithms, albeit with some alterations. The task of detecting small and dim targets in IR imagery is complex. This is because these targets often need distinct features, the background is cluttered with unclear details, and the IR signatures of the scene can change over time due to fluctuations in thermodynamics. The primary objective of this review is to highlight the progress made in this field. This is the first review in the field of small and dim target detection in infrared imagery, encompassing various methodologies ranging from conventional image processing to cutting-edge deep learning-based approaches. The authors have also introduced a taxonomy of such approaches. There are two main types of approaches: methodologies using several frames for detection, and single-frame-based detection techniques. Single frame-based detection techniques encompass a diverse range of methods, spanning from traditional image processing-based approaches to more advanced deep learning methodologies. Our findings indicate that deep learning approaches perform better than traditional image processing-based approaches. In addition, a comprehensive compilation of various available datasets has also been provided. Furthermore, this review identifies the gaps and limitations in existing techniques, paving the way for future research and development in this area.