Abstract:The integration of artificial intelligence (AI) in legal judgment prediction (LJP) has the potential to transform the legal landscape, particularly in jurisdictions like India, where a significant backlog of cases burdens the legal system. This paper introduces NyayaAnumana, the largest and most diverse corpus of Indian legal cases compiled for LJP, encompassing a total of 7,02,945 preprocessed cases. NyayaAnumana, which combines the words "Nyay" (judgment) and "Anuman" (prediction or inference) respectively for most major Indian languages, includes a wide range of cases from the Supreme Court, High Courts, Tribunal Courts, District Courts, and Daily Orders and, thus, provides unparalleled diversity and coverage. Our dataset surpasses existing datasets like PredEx and ILDC, offering a comprehensive foundation for advanced AI research in the legal domain. In addition to the dataset, we present INLegalLlama, a domain-specific generative large language model (LLM) tailored to the intricacies of the Indian legal system. It is developed through a two-phase training approach over a base LLaMa model. First, Indian legal documents are injected using continual pretraining. Second, task-specific supervised finetuning is done. This method allows the model to achieve a deeper understanding of legal contexts. Our experiments demonstrate that incorporating diverse court data significantly boosts model accuracy, achieving approximately 90% F1-score in prediction tasks. INLegalLlama not only improves prediction accuracy but also offers comprehensible explanations, addressing the need for explainability in AI-assisted legal decisions.
Abstract:Multilingual Large Language Models (LLMs) have demonstrated exceptional performance in Machine Translation (MT) tasks. However, their MT abilities in the context of code-switching (the practice of mixing two or more languages in an utterance) remain under-explored. In this paper, we introduce Rule-Based Prompting, a novel prompting technique to generate code-mixed sentences. We measure and compare the code-mixed MT abilities of 3 popular multilingual LLMs: GPT-3.5-turbo, GPT-4, and Gemini Pro across five language pairs: English-{Hindi, Bengali, Gujarati, French, Spanish} using $k$-shot prompting ($k\in\{0, 1, 10, 20\}$) and Rule-Based Prompting. Our findings suggest that though $k$-shot prompting often leads to the best results, Rule-Based prompting shows promise in generating unique code-mixed sentences that vary in their style of code-mixing. We also use $k$-shot prompting to gauge the code-mixed to English translation abilities of multilingual LLMs. For this purpose, we create a gold-standard code-mixed dataset spanning five language pairs: English-{Hindi, Bengali, Gujarati, French, Spanish}. As a real-world application of our work, we create a code-mixed chatbot.
Abstract:Code-mixing, the practice of alternating between two or more languages in an utterance, is a common phenomenon in multilingual communities. Due to the colloquial nature of code-mixing, there is no singular correct way to translate an English sentence into a code-mixed sentence. For this reason, standard n-gram-based MT evaluation metrics such as the BLEU score are not appropriate for code-mixed evaluation. To demonstrate this, we propose a novel method for code-mixed text generation: Controlled Generation, which parameterizes the code-mixing degree (CMD) and enables the generation of multiple semantically equivalent code-mixed sentences from a given English sentence. We introduce a robust new evaluation metric: GAME: A Gold-Standard Agnostic Measure for Evaluation of Code-Mixed Sentences. GAME is both language-agnostic and gold-standard-agnostic, i.e. unlike other metrics, GAME does not require gold-standard code-mixed sentences for evaluation, thus eliminating the need for human annotators in the code-mixed evaluation process. When used to evaluate semantically equivalent code-mixed sentences, we find that GAME scores have a lower standard deviation than BLEU scores. Further, we create and release a dataset containing gold-standard code-mixed sentences across 4 language pairs: English-{Hindi, Bengali, French, Spanish} to encourage more computational research on code-mixing.
Abstract:This paper tackles the challenge of building robust and generalizable bias mitigation models for language. Recognizing the limitations of existing datasets, we introduce ANUBIS, a novel dataset with 1507 carefully curated sentence pairs encompassing nine social bias categories. We evaluate state-of-the-art models like T5, utilizing Supervised Fine-Tuning (SFT), Reinforcement Learning (PPO, DPO), and In-Context Learning (ICL) for effective bias mitigation. Our analysis focuses on multi-class social bias reduction, cross-dataset generalizability, and environmental impact of the trained models. ANUBIS and our findings offer valuable resources for building more equitable AI systems and contribute to the development of responsible and unbiased technologies with broad societal impact.
Abstract:Spatio-temporal forecasting of traffic flow data represents a typical problem in the field of machine learning, impacting urban traffic management systems. Traditional statistical and machine learning methods cannot adequately handle both the temporal and spatial dependencies in these complex traffic flow datasets. A prevalent approach in the field is to combine graph convolutional networks and multi-head attention mechanisms for spatio-temporal processing. This paper proposes a wavelet-based temporal attention model, namely a wavelet-based dynamic spatio-temporal aware graph neural network (W-DSTAGNN), for tackling the traffic forecasting problem. Benchmark experiments using several statistical metrics confirm that our proposal efficiently captures spatio-temporal correlations and outperforms ten state-of-the-art models on three different real-world traffic datasets. Our proposed ensemble data-driven method can handle dynamic temporal and spatial dependencies and make long-term forecasts in an efficient manner.
Abstract:Large Language Models (LLMs) have demonstrated impressive performance across a wide range of NLP tasks, including summarization. Inherently LLMs produce abstractive summaries, and the task of achieving extractive summaries through LLMs still remains largely unexplored. To bridge this gap, in this work, we propose a novel framework LaMSUM to generate extractive summaries through LLMs for large user-generated text by leveraging voting algorithms. Our evaluation on three popular open-source LLMs (Llama 3, Mixtral and Gemini) reveal that the LaMSUM outperforms state-of-the-art extractive summarization methods. We further attempt to provide the rationale behind the output summary produced by LLMs. Overall, this is one of the early attempts to achieve extractive summarization for large user-generated text by utilizing LLMs, and likely to generate further interest in the community.
Abstract:In the era of Large Language Models (LLMs), predicting judicial outcomes poses significant challenges due to the complexity of legal proceedings and the scarcity of expert-annotated datasets. Addressing this, we introduce \textbf{Pred}iction with \textbf{Ex}planation (\texttt{PredEx}), the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context, featuring over 15,000 annotations. This groundbreaking corpus significantly enhances the training and evaluation of AI models in legal analysis, with innovations including the application of instruction tuning to LLMs. This method has markedly improved the predictive accuracy and explanatory depth of these models for legal judgments. We employed various transformer-based models, tailored for both general and Indian legal contexts. Through rigorous lexical, semantic, and expert assessments, our models effectively leverage \texttt{PredEx} to provide precise predictions and meaningful explanations, establishing it as a valuable benchmark for both the legal profession and the NLP community.
Abstract:Despite the availability of vast amounts of data, legal data is often unstructured, making it difficult even for law practitioners to ingest and comprehend the same. It is important to organise the legal information in a way that is useful for practitioners and downstream automation tasks. The word ontology was used by Greek philosophers to discuss concepts of existence, being, becoming and reality. Today, scientists use this term to describe the relation between concepts, data, and entities. A great example for a working ontology was developed by Dhani and Bhatt. This ontology deals with Indian court cases on intellectual property rights (IPR) The future of legal ontologies is likely to be handled by computer experts and legal experts alike.
Abstract:Employing Large Language Models (LLM) in various downstream applications such as classification is crucial, especially for smaller companies lacking the expertise and resources required for fine-tuning a model. Fairness in LLMs helps ensure inclusivity, equal representation based on factors such as race, gender and promotes responsible AI deployment. As the use of LLMs has become increasingly prevalent, it is essential to assess whether LLMs can generate fair outcomes when subjected to considerations of fairness. In this study, we introduce a framework outlining fairness regulations aligned with various fairness definitions, with each definition being modulated by varying degrees of abstraction. We explore the configuration for in-context learning and the procedure for selecting in-context demonstrations using RAG, while incorporating fairness rules into the process. Experiments conducted with different LLMs indicate that GPT-4 delivers superior results in terms of both accuracy and fairness compared to other models. This work is one of the early attempts to achieve fairness in prediction tasks by utilizing LLMs through in-context learning.
Abstract:The escalating number of pending cases is a growing concern world-wide. Recent advancements in digitization have opened up possibilities for leveraging artificial intelligence (AI) tools in the processing of legal documents. Adopting a structured representation for legal documents, as opposed to a mere bag-of-words flat text representation, can significantly enhance processing capabilities. With the aim of achieving this objective, we put forward a set of diverse attributes for criminal case proceedings. We use a state-of-the-art sequence labeling framework to automatically extract attributes from the legal documents. Moreover, we demonstrate the efficacy of the extracted attributes in a downstream task, namely legal judgment prediction.