Abstract:Multilingual Large Language Models (LLMs) have demonstrated exceptional performance in Machine Translation (MT) tasks. However, their MT abilities in the context of code-switching (the practice of mixing two or more languages in an utterance) remain under-explored. In this paper, we introduce Rule-Based Prompting, a novel prompting technique to generate code-mixed sentences. We measure and compare the code-mixed MT abilities of 3 popular multilingual LLMs: GPT-3.5-turbo, GPT-4, and Gemini Pro across five language pairs: English-{Hindi, Bengali, Gujarati, French, Spanish} using $k$-shot prompting ($k\in\{0, 1, 10, 20\}$) and Rule-Based Prompting. Our findings suggest that though $k$-shot prompting often leads to the best results, Rule-Based prompting shows promise in generating unique code-mixed sentences that vary in their style of code-mixing. We also use $k$-shot prompting to gauge the code-mixed to English translation abilities of multilingual LLMs. For this purpose, we create a gold-standard code-mixed dataset spanning five language pairs: English-{Hindi, Bengali, Gujarati, French, Spanish}. As a real-world application of our work, we create a code-mixed chatbot.
Abstract:Code-mixing, the practice of alternating between two or more languages in an utterance, is a common phenomenon in multilingual communities. Due to the colloquial nature of code-mixing, there is no singular correct way to translate an English sentence into a code-mixed sentence. For this reason, standard n-gram-based MT evaluation metrics such as the BLEU score are not appropriate for code-mixed evaluation. To demonstrate this, we propose a novel method for code-mixed text generation: Controlled Generation, which parameterizes the code-mixing degree (CMD) and enables the generation of multiple semantically equivalent code-mixed sentences from a given English sentence. We introduce a robust new evaluation metric: GAME: A Gold-Standard Agnostic Measure for Evaluation of Code-Mixed Sentences. GAME is both language-agnostic and gold-standard-agnostic, i.e. unlike other metrics, GAME does not require gold-standard code-mixed sentences for evaluation, thus eliminating the need for human annotators in the code-mixed evaluation process. When used to evaluate semantically equivalent code-mixed sentences, we find that GAME scores have a lower standard deviation than BLEU scores. Further, we create and release a dataset containing gold-standard code-mixed sentences across 4 language pairs: English-{Hindi, Bengali, French, Spanish} to encourage more computational research on code-mixing.