Abstract:Large Language Models (LLMs) have demonstrated impressive performance across a wide range of NLP tasks, including summarization. Inherently LLMs produce abstractive summaries, and the task of achieving extractive summaries through LLMs still remains largely unexplored. To bridge this gap, in this work, we propose a novel framework LaMSUM to generate extractive summaries through LLMs for large user-generated text by leveraging voting algorithms. Our evaluation on three popular open-source LLMs (Llama 3, Mixtral and Gemini) reveal that the LaMSUM outperforms state-of-the-art extractive summarization methods. We further attempt to provide the rationale behind the output summary produced by LLMs. Overall, this is one of the early attempts to achieve extractive summarization for large user-generated text by utilizing LLMs, and likely to generate further interest in the community.