Abstract:This paper tackles the challenge of building robust and generalizable bias mitigation models for language. Recognizing the limitations of existing datasets, we introduce ANUBIS, a novel dataset with 1507 carefully curated sentence pairs encompassing nine social bias categories. We evaluate state-of-the-art models like T5, utilizing Supervised Fine-Tuning (SFT), Reinforcement Learning (PPO, DPO), and In-Context Learning (ICL) for effective bias mitigation. Our analysis focuses on multi-class social bias reduction, cross-dataset generalizability, and environmental impact of the trained models. ANUBIS and our findings offer valuable resources for building more equitable AI systems and contribute to the development of responsible and unbiased technologies with broad societal impact.
Abstract:In the era of Large Language Models (LLMs), predicting judicial outcomes poses significant challenges due to the complexity of legal proceedings and the scarcity of expert-annotated datasets. Addressing this, we introduce \textbf{Pred}iction with \textbf{Ex}planation (\texttt{PredEx}), the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context, featuring over 15,000 annotations. This groundbreaking corpus significantly enhances the training and evaluation of AI models in legal analysis, with innovations including the application of instruction tuning to LLMs. This method has markedly improved the predictive accuracy and explanatory depth of these models for legal judgments. We employed various transformer-based models, tailored for both general and Indian legal contexts. Through rigorous lexical, semantic, and expert assessments, our models effectively leverage \texttt{PredEx} to provide precise predictions and meaningful explanations, establishing it as a valuable benchmark for both the legal profession and the NLP community.