What is Keypoint Detection? Keypoint detection is essential for analyzing and interpreting images in computer vision. It involves simultaneously detecting and localizing interesting points in an image. Keypoints, also known as interest points, are spatial locations or points in the image that define what is interesting or what stands out. They are invariant to image rotation, shrinkage, translation, distortion, etc. Keypoint examples include body joints, facial landmarks, or any other salient points in objects. Keypoints have uses in problems such as pose estimation, object detection and tracking, facial analysis, and augmented reality.
Papers and Code
Apr 15, 2025
Abstract:The purpose of this paper is to explore the use of underwater image enhancement techniques to improve keypoint detection and matching. By applying advanced deep learning models, including generative adversarial networks and convolutional neural networks, we aim to find the best method which improves the accuracy of keypoint detection and the robustness of matching algorithms. We evaluate the performance of these techniques on various underwater datasets, demonstrating significant improvements over traditional methods.
Via

Apr 16, 2025
Abstract:Feature matching across video streams remains a cornerstone challenge in computer vision. Increasingly, robust multimodal matching has garnered interest in robotics, surveillance, remote sensing, and medical imaging. While traditional rely on detecting and matching spatial features, they break down when faced with noisy, misaligned, or cross-modal data. Recent deep learning methods have improved robustness through learned representations, but remain constrained by their dependence on extensive training data and computational demands. We present Flow Intelligence, a paradigm-shifting approach that moves beyond spatial features by focusing on temporal motion patterns exclusively. Instead of detecting traditional keypoints, our method extracts motion signatures from pixel blocks across consecutive frames and extract temporal motion signatures between videos. These motion-based descriptors achieve natural invariance to translation, rotation, and scale variations while remaining robust across different imaging modalities. This novel approach also requires no pretraining data, eliminates the need for spatial feature detection, enables cross-modal matching using only temporal motion, and it outperforms existing methods in challenging scenarios where traditional approaches fail. By leveraging motion rather than appearance, Flow Intelligence enables robust, real-time video feature matching in diverse environments.
Via

Apr 14, 2025
Abstract:This paper addresses critical challenges in 3D Human Pose Estimation (HPE) by analyzing the robustness and sensitivity of existing models to occlusions, camera position, and action variability. Using a novel synthetic dataset, BlendMimic3D, which includes diverse scenarios with multi-camera setups and several occlusion types, we conduct specific tests on several state-of-the-art models. Our study focuses on the discrepancy in keypoint formats between common datasets such as Human3.6M, and 2D datasets such as COCO, commonly used for 2D detection models and frequently input of 3D HPE models. Our work explores the impact of occlusions on model performance and the generality of models trained exclusively under standard conditions. The findings suggest significant sensitivity to occlusions and camera settings, revealing a need for models that better adapt to real-world variability and occlusion scenarios. This research contributed to ongoing efforts to improve the fidelity and applicability of 3D HPE systems in complex environments.
Via

Apr 11, 2025
Abstract:Image-based surface reconstruction and characterization is crucial for missions to small celestial bodies, as it informs mission planning, navigation, and scientific analysis. However, current state-of-the-practice methods, such as stereophotoclinometry (SPC), rely heavily on human-in-the-loop verification and high-fidelity a priori information. This paper proposes Photoclinometry-from-Motion (PhoMo), a novel framework that incorporates photoclinometry techniques into a keypoint-based structure-from-motion (SfM) system to estimate the surface normal and albedo at detected landmarks to improve autonomous surface and shape characterization of small celestial bodies from in-situ imagery. In contrast to SPC, we forego the expensive maplet estimation step and instead use dense keypoint measurements and correspondences from an autonomous keypoint detection and matching method based on deep learning. Moreover, we develop a factor graph-based approach allowing for simultaneous optimization of the spacecraft's pose, landmark positions, Sun-relative direction, and surface normals and albedos via fusion of Sun vector measurements and image keypoint measurements. The proposed framework is validated on real imagery taken by the Dawn mission to the asteroid 4 Vesta and the minor planet 1 Ceres and compared against an SPC reconstruction, where we demonstrate superior rendering performance compared to an SPC solution and precise alignment to a stereophotogrammetry (SPG) solution without relying on any a priori camera pose and topography information or humans-in-the-loop.
* arXiv admin note: substantial text overlap with arXiv:2312.06865
Via

Apr 07, 2025
Abstract:We propose a deep learning framework designed to significantly optimize bandwidth for motion-transfer-enabled video applications, including video conferencing, virtual reality interactions, health monitoring systems, and vision-based real-time anomaly detection. To capture complex motion effectively, we utilize the First Order Motion Model (FOMM), which encodes dynamic objects by detecting keypoints and their associated local affine transformations. These keypoints are identified using a self-supervised keypoint detector and arranged into a time series corresponding to the successive frames. Forecasting is performed on these keypoints by integrating two advanced generative time series models into the motion transfer pipeline, namely the Variational Recurrent Neural Network (VRNN) and the Gated Recurrent Unit with Normalizing Flow (GRU-NF). The predicted keypoints are subsequently synthesized into realistic video frames using an optical flow estimator paired with a generator network, thereby facilitating accurate video forecasting and enabling efficient, low-frame-rate video transmission. We validate our results across three datasets for video animation and reconstruction using the following metrics: Mean Absolute Error, Joint Embedding Predictive Architecture Embedding Distance, Structural Similarity Index, and Average Pair-wise Displacement. Our results confirm that by utilizing the superior reconstruction property of the Variational Autoencoder, the VRNN integrated FOMM excels in applications involving multi-step ahead forecasts such as video conferencing. On the other hand, by leveraging the Normalizing Flow architecture for exact likelihood estimation, and enabling efficient latent space sampling, the GRU-NF based FOMM exhibits superior capabilities for producing diverse future samples while maintaining high visual quality for tasks like real-time video-based anomaly detection.
Via

Mar 31, 2025
Abstract:Event-based keypoint detection and matching holds significant potential, enabling the integration of event sensors into highly optimized Visual SLAM systems developed for frame cameras over decades of research. Unfortunately, existing approaches struggle with the motion-dependent appearance of keypoints and the complex noise prevalent in event streams, resulting in severely limited feature matching capabilities and poor performance on downstream tasks. To mitigate this problem, we propose SuperEvent, a data-driven approach to predict stable keypoints with expressive descriptors. Due to the absence of event datasets with ground truth keypoint labels, we leverage existing frame-based keypoint detectors on readily available event-aligned and synchronized gray-scale frames for self-supervision: we generate temporally sparse keypoint pseudo-labels considering that events are a product of both scene appearance and camera motion. Combined with our novel, information-rich event representation, we enable SuperEvent to effectively learn robust keypoint detection and description in event streams. Finally, we demonstrate the usefulness of SuperEvent by its integration into a modern sparse keypoint and descriptor-based SLAM framework originally developed for traditional cameras, surpassing the state-of-the-art in event-based SLAM by a wide margin. Source code and multimedia material are available at smartroboticslab.github.io/SuperEvent.
* In Review for ICCV25
Via

Apr 02, 2025
Abstract:With the rapid development of Rehabilitation Lower Extremity Robotic Exoskeletons (RLEEX) technology, significant advancements have been made in Human-Robot Interaction (HRI) methods. These include traditional physical HRI methods that are easily recognizable and various bio-electrical signal-based HRI methods that can visualize and predict actions. However, most of these HRI methods are contact-based, facing challenges such as operational complexity, sensitivity to interference, risks associated with implantable devices, and, most importantly, limitations in comfort. These challenges render the interaction less intuitive and natural, which can negatively impact patient motivation for rehabilitation. To address these issues, this paper proposes a novel non-contact gesture interaction control method for RLEEX, based on RGB monocular camera depth estimation. This method integrates three key steps: detecting keypoints, recognizing gestures, and assessing distance, thereby applying gesture information and augmented reality triggering technology to control gait movements of RLEEX. Results indicate that this approach provides a feasible solution to the problems of poor comfort, low reliability, and high latency in HRI for RLEEX platforms. Specifically, it achieves a gesture-controlled exoskeleton motion accuracy of 94.11\% and an average system response time of 0.615 seconds through non-contact HRI. The proposed non-contact HRI method represents a pioneering advancement in control interactions for RLEEX, paving the way for further exploration and development in this field.
Via

Mar 31, 2025
Abstract:Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
* Accepted to CVPR 2025
Via

Mar 29, 2025
Abstract:The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.
* 7 Pages, Accepted for presentation in the 2025 International
Conference on Unmanned Aircraft Systems (ICUAS 2025)
Via

Mar 25, 2025
Abstract:Feature Coding for Machines (FCM) aims to compress intermediate features effectively for remote intelligent analytics, which is crucial for future intelligent visual applications. In this paper, we propose a Multiscale Feature Importance-based Bit Allocation (MFIBA) for end-to-end FCM. First, we find that the importance of features for machine vision tasks varies with the scales, object size, and image instances. Based on this finding, we propose a Multiscale Feature Importance Prediction (MFIP) module to predict the importance weight for each scale of features. Secondly, we propose a task loss-rate model to establish the relationship between the task accuracy losses of using compressed features and the bitrate of encoding these features. Finally, we develop a MFIBA for end-to-end FCM, which is able to assign coding bits of multiscale features more reasonably based on their importance. Experimental results demonstrate that when combined with a retained Efficient Learned Image Compression (ELIC), the proposed MFIBA achieves an average of 38.202% bitrate savings in object detection compared to the anchor ELIC. Moreover, the proposed MFIBA achieves an average of 17.212% and 36.492% feature bitrate savings for instance segmentation and keypoint detection, respectively. When the proposed MFIBA is applied to the LIC-TCM, it achieves an average of 18.103%, 19.866% and 19.597% bit rate savings on three machine vision tasks, respectively, which validates the proposed MFIBA has good generalizability and adaptability to different machine vision tasks and FCM base codecs.
Via
