This paper addresses critical challenges in 3D Human Pose Estimation (HPE) by analyzing the robustness and sensitivity of existing models to occlusions, camera position, and action variability. Using a novel synthetic dataset, BlendMimic3D, which includes diverse scenarios with multi-camera setups and several occlusion types, we conduct specific tests on several state-of-the-art models. Our study focuses on the discrepancy in keypoint formats between common datasets such as Human3.6M, and 2D datasets such as COCO, commonly used for 2D detection models and frequently input of 3D HPE models. Our work explores the impact of occlusions on model performance and the generality of models trained exclusively under standard conditions. The findings suggest significant sensitivity to occlusions and camera settings, revealing a need for models that better adapt to real-world variability and occlusion scenarios. This research contributed to ongoing efforts to improve the fidelity and applicability of 3D HPE systems in complex environments.