Abstract:Feature matching across video streams remains a cornerstone challenge in computer vision. Increasingly, robust multimodal matching has garnered interest in robotics, surveillance, remote sensing, and medical imaging. While traditional rely on detecting and matching spatial features, they break down when faced with noisy, misaligned, or cross-modal data. Recent deep learning methods have improved robustness through learned representations, but remain constrained by their dependence on extensive training data and computational demands. We present Flow Intelligence, a paradigm-shifting approach that moves beyond spatial features by focusing on temporal motion patterns exclusively. Instead of detecting traditional keypoints, our method extracts motion signatures from pixel blocks across consecutive frames and extract temporal motion signatures between videos. These motion-based descriptors achieve natural invariance to translation, rotation, and scale variations while remaining robust across different imaging modalities. This novel approach also requires no pretraining data, eliminates the need for spatial feature detection, enables cross-modal matching using only temporal motion, and it outperforms existing methods in challenging scenarios where traditional approaches fail. By leveraging motion rather than appearance, Flow Intelligence enables robust, real-time video feature matching in diverse environments.
Abstract:Classifying videos into distinct categories, such as Sport and Music Video, is crucial for multimedia understanding and retrieval, especially when an immense volume of video content is being constantly generated. Traditional methods require video decompression to extract pixel-level features like color, texture, and motion, thereby increasing computational and storage demands. Moreover, these methods often suffer from performance degradation in low-quality videos. We present a novel approach that examines only the post-compression bitstream of a video to perform classification, eliminating the need for bitstream decoding. To validate our approach, we built a comprehensive data set comprising over 29,000 YouTube video clips, totaling 6,000 hours and spanning 11 distinct categories. Our evaluations indicate precision, accuracy, and recall rates consistently above 80%, many exceeding 90%, and some reaching 99%. The algorithm operates approximately 15,000 times faster than real-time for 30fps videos, outperforming traditional Dynamic Time Warping (DTW) algorithm by seven orders of magnitude.
Abstract:Classifying videos into distinct categories, such as Sport and Music Video, is crucial for multimedia understanding and retrieval, especially in an age where an immense volume of video content is constantly being generated. Traditional methods require video decompression to extract pixel-level features like color, texture, and motion, thereby increasing computational and storage demands. Moreover, these methods often suffer from performance degradation in low-quality videos. We present a novel approach that examines only the post-compression bitstream of a video to perform classification, eliminating the need for bitstream. We validate our approach using a custom-built data set comprising over 29,000 YouTube video clips, totaling 6,000 hours and spanning 11 distinct categories. Our preliminary evaluations indicate precision, accuracy, and recall rates well over 80%. The algorithm operates approximately 15,000 times faster than real-time for 30fps videos, outperforming traditional Dynamic Time Warping (DTW) algorithm by six orders of magnitude.