Topic:Grammatical Error Correction
What is Grammatical Error Correction? Grammatical error correction (GEC) is the task of correcting different kinds of errors in text such as spelling, punctuation, grammatical, and word-choice errors.
Papers and Code
Apr 16, 2025
Abstract:Although Arabic is spoken by over 400 million people, advanced Arabic writing assistance tools remain limited. To address this gap, we present ARWI, a new writing assistant that helps learners improve essay writing in Modern Standard Arabic. ARWI is the first publicly available Arabic writing assistant to include a prompt database for different proficiency levels, an Arabic text editor, state-of-the-art grammatical error detection and correction, and automated essay scoring aligned with the Common European Framework of Reference standards for language attainment. Moreover, ARWI can be used to gather a growing auto-annotated corpus, facilitating further research on Arabic grammar correction and essay scoring, as well as profiling patterns of errors made by native speakers and non-native learners. A preliminary user study shows that ARWI provides actionable feedback, helping learners identify grammatical gaps, assess language proficiency, and guide improvement.
Via

Apr 11, 2025
Abstract:Despite the impressive performance of Retrieval-augmented Generation (RAG) systems across various NLP benchmarks, their robustness in handling real-world user-LLM interaction queries remains largely underexplored. This presents a critical gap for practical deployment, where user queries exhibit greater linguistic variations and can trigger cascading errors across interdependent RAG components. In this work, we systematically analyze how varying four linguistic dimensions (formality, readability, politeness, and grammatical correctness) impact RAG performance. We evaluate two retrieval models and nine LLMs, ranging from 3 to 72 billion parameters, across four information-seeking Question Answering (QA) datasets. Our results reveal that linguistic reformulations significantly impact both retrieval and generation stages, leading to a relative performance drop of up to 40.41% in Recall@5 scores for less formal queries and 38.86% in answer match scores for queries containing grammatical errors. Notably, RAG systems exhibit greater sensitivity to such variations compared to LLM-only generations, highlighting their vulnerability to error propagation due to linguistic shifts. These findings highlight the need for improved robustness techniques to enhance reliability in diverse user interactions.
Via

Apr 08, 2025
Abstract:We propose a novel three-step prompt-tuning method for Bengali Grammatical Error Explanation (BGEE) using state-of-the-art large language models (LLMs) such as GPT-4, GPT-3.5 Turbo, and Llama-2-70b. Our approach involves identifying and categorizing grammatical errors in Bengali sentences, generating corrected versions of the sentences, and providing natural language explanations for each identified error. We evaluate the performance of our BGEE system using both automated evaluation metrics and human evaluation conducted by experienced Bengali language experts. Our proposed prompt-tuning approach shows that GPT-4, the best performing LLM, surpasses the baseline model in automated evaluation metrics, with a 5.26% improvement in F1 score and a 6.95% improvement in exact match. Furthermore, compared to the previous baseline, GPT-4 demonstrates a decrease of 25.51% in wrong error type and a decrease of 26.27% in wrong error explanation. However, the results still lag behind the human baseline.
* 9 pages, 2 figures
Via

Apr 01, 2025
Abstract:Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC.
Via

Mar 31, 2025
Abstract:The deployment of Machine Learning models at cloud have grown by tech companies. Hardware requirements are higher when these models involve Deep Learning (DL) techniques and the cloud providers' costs may be a barrier. We explore deploying DL models using for experiments the GECToR model, a DL solution for Grammatical Error Correction, across three of the major cloud platforms (AWS, Google Cloud, Azure). We evaluate real-time latency, hardware usage and cost at each cloud provider by 7 execution environments with 10 experiments reproduced. We found that while GPUs excel in performance, they had an average cost 300% higher than solutions without GPU. Our analysis also identifies that processor cache size is crucial for cost-effective CPU deployments, enabling over 50% of cost reduction compared to GPUs. This study demonstrates the feasibility and affordability of cloud-based DL inference solutions without GPUs, benefiting resource-constrained users like startups.
* 15 pages, 7 figures
Via

Mar 02, 2025
Abstract:Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available.
Via

Feb 21, 2025
Abstract:Grammatical Error Correction (GEC) faces a critical challenge concerning explainability, notably when GEC systems are designed for language learners. Existing research predominantly focuses on explaining grammatical errors extracted in advance, thus neglecting the relationship between explanations and corrections. To address this gap, we introduce EXGEC, a unified explainable GEC framework that integrates explanation and correction tasks in a generative manner, advocating that these tasks mutually reinforce each other. Experiments have been conducted on EXPECT, a recent human-labeled dataset for explainable GEC, comprising around 20k samples. Moreover, we detect significant noise within EXPECT, potentially compromising model training and evaluation. Therefore, we introduce an alternative dataset named EXPECT-denoised, ensuring a more objective framework for training and evaluation. Results on various NLP models (BART, T5, and Llama3) show that EXGEC models surpass single-task baselines in both tasks, demonstrating the effectiveness of our approach.
* 19 pages, 2 figures, and 9 tables
Via

Feb 12, 2025
Abstract:Grammatical error correction (GEC) aims to correct grammatical, spelling, and semantic errors in natural language text. With the growing of large language models (LLMs), direct text generation has gradually become the focus of the GEC methods, and few-shot in-context learning presents a cost-effective solution. However, selecting effective in-context examples remains challenging, as the similarity between input texts does not necessarily correspond to similar grammatical error patterns. In this paper, we propose a novel retrieval method based on natural language grammatical error explanations (GEE) to address this issue. Our method retrieves suitable few-shot demonstrations by matching the GEE of the test input with that of pre-constructed database samples, where explanations for erroneous samples are generated by LLMs. We conducted multilingual GEC few-shot experiments on both major open-source and closed-source LLMs. Experiments across five languages show that our method outperforms existing semantic and BM25-based retrieval techniques, without requiring additional training or language adaptation. This also suggests that matching error patterns is key to selecting examples.
* Accepted by NAACL 2025 main conference
Via

Feb 13, 2025
Abstract:One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, $n$-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. We publish our unified implementation of the metrics and meta-evaluations.
* 4 pages, 2 figures
Via

Feb 07, 2025
Abstract:Synthetic data generation is widely recognized as a way to enhance the quality of neural grammatical error correction (GEC) systems. However, current approaches often lack diversity or are too simplistic to generate the wide range of grammatical errors made by humans, especially for low-resource languages such as Arabic. In this paper, we will develop the error tagging model and the synthetic data generation model to create a large synthetic dataset in Arabic for grammatical error correction. In the error tagging model, the correct sentence is categorized into multiple error types by using the DeBERTav3 model. Arabic Error Type Annotation tool (ARETA) is used to guide multi-label classification tasks in an error tagging model in which each sentence is classified into 26 error tags. The synthetic data generation model is a back-translation-based model that generates incorrect sentences by appending error tags before the correct sentence that was generated from the error tagging model using the ARAT5 model. In the QALB-14 and QALB-15 Test sets, the error tagging model achieved 94.42% F1, which is state-of-the-art in identifying error tags in clean sentences. As a result of our syntactic data training in grammatical error correction, we achieved a new state-of-the-art result of F1-Score: 79.36% in the QALB-14 Test set. We generate 30,219,310 synthetic sentence pairs by using a synthetic data generation model.
* 21 pages, 3 figures
Via
