New York University Abu Dhabi
Abstract:This study presents the ``Arabic Derivational ChainBank,'' a novel framework for modeling Arabic derivational morphology. It establishes connections between forms and meanings by constructing a chain of derived words that reflect their derivational significance. To expedite the process, a rule-based methodology was employed, avoiding time-consuming manual annotation. The derivational network was then aligned with the CamelMorph morphological analyzer database. This two-step process resulted in a chain of derived word lemmas linked to their roots, encompassing 23,333 evaluated derivational relations, thereby demonstrating the efficiency of the ChainBank.
Abstract:This paper presents the foundational framework and initial findings of the Balanced Arabic Readability Evaluation Corpus (BAREC) project, designed to address the need for comprehensive Arabic language resources aligned with diverse readability levels. Inspired by the Taha/Arabi21 readability reference, BAREC aims to provide a standardized reference for assessing sentence-level Arabic text readability across 19 distinct levels, ranging in targets from kindergarten to postgraduate comprehension. Our ultimate goal with BAREC is to create a comprehensive and balanced corpus that represents a wide range of genres, topics, and regional variations through a multifaceted approach combining manual annotation with AI-driven tools. This paper focuses on our meticulous annotation guidelines, demonstrated through the analysis of 10,631 sentences/phrases (113,651 words). The average pairwise inter-annotator agreement, measured by Quadratic Weighted Kappa, is 79.9%, reflecting a high level of substantial agreement. We also report competitive results for benchmarking automatic readability assessment. We will make the BAREC corpus and guidelines openly accessible to support Arabic language research and education.
Abstract:The widespread accessibility of large language models (LLMs) to the general public has significantly amplified the dissemination of machine-generated texts (MGTs). Advancements in prompt manipulation have exacerbated the difficulty in discerning the origin of a text (human-authored vs machinegenerated). This raises concerns regarding the potential misuse of MGTs, particularly within educational and academic domains. In this paper, we present $\textbf{LLM-DetectAIve}$ -- a system designed for fine-grained MGT detection. It is able to classify texts into four categories: human-written, machine-generated, machine-written machine-humanized, and human-written machine-polished. Contrary to previous MGT detectors that perform binary classification, introducing two additional categories in LLM-DetectiAIve offers insights into the varying degrees of LLM intervention during the text creation. This might be useful in some domains like education, where any LLM intervention is usually prohibited. Experiments show that LLM-DetectAIve can effectively identify the authorship of textual content, proving its usefulness in enhancing integrity in education, academia, and other domains. LLM-DetectAIve is publicly accessible at https://huggingface.co/spaces/raj-tomar001/MGT-New. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
Abstract:We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed.
Abstract:We describe the findings of the fifth Nuanced Arabic Dialect Identification Shared Task (NADI 2024). NADI's objective is to help advance SoTA Arabic NLP by providing guidance, datasets, modeling opportunities, and standardized evaluation conditions that allow researchers to collaboratively compete on pre-specified tasks. NADI 2024 targeted both dialect identification cast as a multi-label task (Subtask~1), identification of the Arabic level of dialectness (Subtask~2), and dialect-to-MSA machine translation (Subtask~3). A total of 51 unique teams registered for the shared task, of whom 12 teams have participated (with 76 valid submissions during the test phase). Among these, three teams participated in Subtask~1, three in Subtask~2, and eight in Subtask~3. The winning teams achieved 50.57 F\textsubscript{1} on Subtask~1, 0.1403 RMSE for Subtask~2, and 20.44 BLEU in Subtask~3, respectively. Results show that Arabic dialect processing tasks such as dialect identification and machine translation remain challenging. We describe the methods employed by the participating teams and briefly offer an outlook for NADI.
Abstract:Automatic readability assessment is relevant to building NLP applications for education, content analysis, and accessibility. However, Arabic readability assessment is a challenging task due to Arabic's morphological richness and limited readability resources. In this paper, we present a set of experimental results on Arabic readability assessment using a diverse range of approaches, from rule-based methods to Arabic pretrained language models. We report our results on a newly created corpus at different textual granularity levels (words and sentence fragments). Our results show that combining different techniques yields the best results, achieving an overall macro F1 score of 86.7 at the word level and 87.9 at the fragment level on a blind test set. We make our code, data, and pretrained models publicly available.
Abstract:Dialectal Arabic is the primary spoken language used by native Arabic speakers in daily communication. The rise of social media platforms has notably expanded its use as a written language. However, Arabic dialects do not have standard orthographies. This, combined with the inherent noise in user-generated content on social media, presents a major challenge to NLP applications dealing with Dialectal Arabic. In this paper, we explore and report on the task of CODAfication, which aims to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA). We work with a unique parallel corpus of multiple Arabic dialects focusing on five major city dialects. We benchmark newly developed pretrained sequence-to-sequence models on the task of CODAfication. We further show that using dialect identification information improves the performance across all dialects. We make our code, data, and pretrained models publicly available.
Abstract:The widespread absence of diacritical marks in Arabic text poses a significant challenge for Arabic natural language processing (NLP). This paper explores instances of naturally occurring diacritics, referred to as "diacritics in the wild," to unveil patterns and latent information across six diverse genres: news articles, novels, children's books, poetry, political documents, and ChatGPT outputs. We present a new annotated dataset that maps real-world partially diacritized words to their maximal full diacritization in context. Additionally, we propose extensions to the analyze-and-disambiguate approach in Arabic NLP to leverage these diacritics, resulting in notable improvements. Our contributions encompass a thorough analysis, valuable datasets, and an extended diacritization algorithm. We release our code and datasets as open source.
Abstract:We present the SAMER Corpus, the first manually annotated Arabic parallel corpus for text simplification targeting school-aged learners. Our corpus comprises texts of 159K words selected from 15 publicly available Arabic fiction novels most of which were published between 1865 and 1955. Our corpus includes readability level annotations at both the document and word levels, as well as two simplified parallel versions for each text targeting learners at two different readability levels. We describe the corpus selection process, and outline the guidelines we followed to create the annotations and ensure their quality. Our corpus is publicly available to support and encourage research on Arabic text simplification, Arabic automatic readability assessment, and the development of Arabic pedagogical language technologies.
Abstract:The rapid evolution of Natural Language Processing (NLP) has favored major languages such as English, leaving a significant gap for many others due to limited resources. This is especially evident in the context of data annotation, a task whose importance cannot be underestimated, but which is time-consuming and costly. Thus, any dataset for resource-poor languages is precious, in particular when it is task-specific. Here, we explore the feasibility of repurposing existing datasets for a new NLP task: we repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA), to enable extractive QA (EQA) in the style of machine reading comprehension. We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA). We also present QA evaluation results for several monolingual and cross-lingual QA pairs including English, MSA, and five Arabic dialects. Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced. We also conduct a thorough analysis and share our insights from the process, which we hope will contribute to a deeper understanding of the challenges and the opportunities associated with task reformulation in NLP research.