Abstract:Explainable artificial intelligence (XAI) aims to make machine learning models more transparent. While many approaches focus on generating explanations post-hoc, interpretable approaches, which generate the explanations intrinsically alongside the predictions, are relatively rare. In this work, we integrate different discrete subset sampling methods into a graph-based visual question answering system to compare their effectiveness in generating interpretable explanatory subgraphs intrinsically. We evaluate the methods on the GQA dataset and show that the integrated methods effectively mitigate the performance trade-off between interpretability and answer accuracy, while also achieving strong co-occurrences between answer and question tokens. Furthermore, we conduct a human evaluation to assess the interpretability of the generated subgraphs using a comparative setting with the extended Bradley-Terry model, showing that the answer and question token co-occurrence metrics strongly correlate with human preferences. Our source code is publicly available.
Abstract:In sensitive domains, such as legal or medial domains, the correctness of information given to users is critical. To address this, the recently introduced task Conversational Tree Search (CTS) provides a graph-based framework for controllable task-oriented dialog in sensitive domains. However, a big drawback of state-of-the-art CTS agents is their long training time, which is especially problematic as a new agent must be trained every time the associated domain graph is updated. The goal of this paper is to eliminate the need for training CTS agents altogether. To achieve this, we implement a novel LLM-based method for zero-shot, controllable CTS agents. We show that these agents significantly outperform state-of-the-art CTS agents (p<0.0001; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent performance in the wild, showing that our policy significantly (p<0.05; Barnard Exact) improves task-success compared to the state-of-the-art Reinforcement Learning-based CTS agent.
Abstract:Traditional speech enhancement methods often oversimplify the task of restoration by focusing on a single type of distortion. Generative models that handle multiple distortions frequently struggle with phone reconstruction and high-frequency harmonics, leading to breathing and gasping artifacts that reduce the intelligibility of reconstructed speech. These models are also computationally demanding, and many solutions are restricted to producing outputs in the wide-band frequency range, which limits their suitability for professional applications. To address these challenges, we propose Hi-ResLDM, a novel generative model based on latent diffusion designed to remove multiple distortions and restore speech recordings to studio quality, sampled at 48kHz. We benchmark Hi-ResLDM against state-of-the-art methods that leverage GAN and Conditional Flow Matching (CFM) components, demonstrating superior performance in regenerating high-frequency-band details. Hi-ResLDM not only excels in non-instrusive metrics but is also consistently preferred in human evaluation and performs competitively on intrusive evaluations, making it ideal for high-resolution speech restoration.
Abstract:Mental models play an important role in whether user interaction with intelligent systems, such as dialog systems is successful or not. Adaptive dialog systems present the opportunity to align a dialog agent's behavior with heterogeneous user expectations. However, there has been little research into what mental models users form when interacting with a task-oriented dialog system, how these models affect users' interactions, or what role system adaptation can play in this process, making it challenging to avoid damage to human-AI partnership. In this work, we collect a new publicly available dataset for exploring user mental models about information seeking dialog systems. We demonstrate that users have a variety of conflicting mental models about such systems, the validity of which directly impacts the success of their interactions and perceived usability of system. Furthermore, we show that adapting a dialog agent's behavior to better align with users' mental models, even when done implicitly, can improve perceived usability, dialog efficiency, and success. To this end, we argue that implicit adaptation can be a valid strategy for task-oriented dialog systems, so long as developers first have a solid understanding of users' mental models.
Abstract:Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and learn similarities between them. However, it is not understood how such models compare two inputs. Here, we address this research gap with two contributions. First, we derive a method to attribute predictions of any differentiable dual encoder onto feature-pair interactions between its inputs. Second, we apply our method to CLIP-type models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. However, this visual-linguistic grounding ability heavily varies between object classes, depends on the training data distribution, and largely improves after in-domain training. Using our method we can identify knowledge gaps about specific object classes in individual models and can monitor their improvement upon fine-tuning.
Abstract:Training a semi-supervised end-to-end speech recognition system using noisy student training has significantly improved performance. However, this approach requires a substantial amount of paired speech-text and unlabeled speech, which is costly for low-resource languages. Therefore, this paper considers a more extreme case of semi-supervised end-to-end automatic speech recognition where there are limited paired speech-text, unlabeled speech (less than five hours), and abundant external text. Firstly, we observe improved performance by training the model using our previous work on semi-supervised learning "CycleGAN and inter-domain losses" solely with external text. Secondly, we enhance "CycleGAN and inter-domain losses" by incorporating automatic hyperparameter tuning, calling it "enhanced CycleGAN inter-domain losses." Thirdly, we integrate it into the noisy student training approach pipeline for low-resource scenarios. Our experimental results, conducted on six non-English languages from Voxforge and Common Voice, show a 20% word error rate reduction compared to the baseline teacher model and a 10% word error rate reduction compared to the baseline best student model, highlighting the significant improvements achieved through our proposed method.
Abstract:In speaker anonymization, speech recordings are modified in a way that the identity of the speaker remains hidden. While this technology could help to protect the privacy of individuals around the globe, current research restricts this by focusing almost exclusively on English data. In this study, we extend a state-of-the-art anonymization system to nine languages by transforming language-dependent components to their multilingual counterparts. Experiments testing the robustness of the anonymized speech against privacy attacks and speech deterioration show an overall success of this system for all languages. The results suggest that speaker embeddings trained on English data can be applied across languages, and that the anonymization performance for a language is mainly affected by the quality of the speech synthesis component used for it.
Abstract:In recent years, prompting has quickly become one of the standard ways of steering the outputs of generative machine learning models, due to its intuitive use of natural language. In this work, we propose a system conditioned on embeddings derived from an emotionally rich text that serves as prompt. Thereby, a joint representation of speaker and prompt embeddings is integrated at several points within a transformer-based architecture. Our approach is trained on merged emotional speech and text datasets and varies prompts in each training iteration to increase the generalization capabilities of the model. Objective and subjective evaluation results demonstrate the ability of the conditioned synthesis system to accurately transfer the emotions present in a prompt to speech. At the same time, precise tractability of speaker identities as well as overall high speech quality and intelligibility are maintained.
Abstract:In this work, we take on the challenging task of building a single text-to-speech synthesis system that is capable of generating speech in over 7000 languages, many of which lack sufficient data for traditional TTS development. By leveraging a novel integration of massively multilingual pretraining and meta learning to approximate language representations, our approach enables zero-shot speech synthesis in languages without any available data. We validate our system's performance through objective measures and human evaluation across a diverse linguistic landscape. By releasing our code and models publicly, we aim to empower communities with limited linguistic resources and foster further innovation in the field of speech technology.
Abstract:Although language models (LMs) have boosted the performance of Question Answering, they still need plenty of data. Data annotation, in contrast, is a time-consuming process. This especially applies to Question Answering, where possibly large documents have to be parsed and annotated with questions and their corresponding answers. Furthermore, Question Answering models often only work well for the domain they were trained on. Since annotation is costly, we argue that domain-agnostic knowledge from LMs, such as linguistic understanding, is sufficient to create a well-curated dataset. With this motivation, we show that using large language models can improve Question Answering performance on various datasets in the few-shot setting compared to state-of-the-art approaches. For this, we perform data generation leveraging the Prompting framework, suggesting that language models contain valuable task-agnostic knowledge that can be used beyond the common pre-training/fine-tuning scheme. As a result, we consistently outperform previous approaches on few-shot Question Answering.