Abstract:Large Language Models (LLMs) are increasingly required to generate text that is both factually accurate and diverse across various open-ended applications. However, current stochastic decoding methods struggle to balance such objectives. We introduce Dynamic Focus Decoding (DFD), a novel plug-and-play stochastic approach that resolves this trade-off without requiring additional data, knowledge, or models. DFD adaptively adjusts the decoding focus based on distributional differences across layers, leveraging the modular and hierarchical nature of factual knowledge within LLMs. This dynamic adjustment improves factuality in knowledge-intensive decoding steps and promotes diversity in less knowledge-reliant steps. DFD can be easily integrated with existing decoding methods, enhancing both factuality and diversity with minimal computational overhead. Extensive experiments across seven datasets demonstrate that DFD significantly improves performance, providing a scalable and efficient solution for open-ended text generation.
Abstract:Implementing new features in repository-level codebases is a crucial application of code generation models. However, current benchmarks lack a dedicated evaluation framework for this capability. To fill this gap, we introduce FEA-Bench, a benchmark designed to assess the ability of large language models (LLMs) to perform incremental development within code repositories. We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development. Each task instance containing code changes is paired with relevant unit test files to ensure that the solution can be verified. The feature implementation requires LLMs to simultaneously possess code completion capabilities for new components and code editing abilities for other relevant parts in the code repository, providing a more comprehensive evaluation method of LLMs' automated software engineering capabilities. Experimental results show that LLMs perform significantly worse in the FEA-Bench, highlighting considerable challenges in such repository-level incremental code development.
Abstract:Grammatical error correction (GEC) aims to correct grammatical, spelling, and semantic errors in natural language text. With the growing of large language models (LLMs), direct text generation has gradually become the focus of the GEC methods, and few-shot in-context learning presents a cost-effective solution. However, selecting effective in-context examples remains challenging, as the similarity between input texts does not necessarily correspond to similar grammatical error patterns. In this paper, we propose a novel retrieval method based on natural language grammatical error explanations (GEE) to address this issue. Our method retrieves suitable few-shot demonstrations by matching the GEE of the test input with that of pre-constructed database samples, where explanations for erroneous samples are generated by LLMs. We conducted multilingual GEC few-shot experiments on both major open-source and closed-source LLMs. Experiments across five languages show that our method outperforms existing semantic and BM25-based retrieval techniques, without requiring additional training or language adaptation. This also suggests that matching error patterns is key to selecting examples.
Abstract:Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), achieving remarkable performance across diverse tasks and enabling widespread real-world applications. However, LLMs are prone to hallucination, generating content that either conflicts with established knowledge or is unfaithful to the original sources. Existing hallucination benchmarks primarily focus on sentence- or passage-level hallucination detection, neglecting dialogue-level evaluation, hallucination localization, and rationale provision. They also predominantly target factuality hallucinations while underestimating faithfulness hallucinations, often relying on labor-intensive or non-specialized evaluators. To address these limitations, we propose HalluDial, the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation. HalluDial encompasses both spontaneous and induced hallucination scenarios, covering factuality and faithfulness hallucinations. The benchmark includes 4,094 dialogues with a total of 146,856 samples. Leveraging HalluDial, we conduct a comprehensive meta-evaluation of LLMs' hallucination evaluation capabilities in information-seeking dialogues and introduce a specialized judge language model, HalluJudge. The high data quality of HalluDial enables HalluJudge to achieve superior or competitive performance in hallucination evaluation, facilitating the automatic assessment of dialogue-level hallucinations in LLMs and providing valuable insights into this phenomenon. The dataset and the code are available at https://github.com/FlagOpen/HalluDial.
Abstract:Semiparametric language models (LMs) have shown promise in continuously learning from new text data by combining a parameterized neural LM with a growable non-parametric memory for memorizing new content. However, conventional semiparametric LMs will finally become prohibitive for computing and storing if they are applied to continual learning over streaming data, because the non-parametric memory grows linearly with the amount of data they learn from over time. To address the issue of scalability, we present a simple and intuitive approach called Selective Memorization (SeMem), which only memorizes difficult samples that the model is likely to struggle with. We demonstrate that SeMem improves the scalability of semiparametric LMs for continual learning over streaming data in two ways: (1) data-wise scalability: as the model becomes stronger through continual learning, it will encounter fewer difficult cases that need to be memorized, causing the growth of the non-parametric memory to slow down over time rather than growing at a linear rate with the size of training data; (2) model-wise scalability: SeMem allows a larger model to memorize fewer samples than its smaller counterpart because it is rarer for a larger model to encounter incomprehensible cases, resulting in a non-parametric memory that does not scale linearly with model size. We conduct extensive experiments in language modeling and downstream tasks to test SeMem's results, showing SeMem enables a semiparametric LM to be a scalable continual learner with little forgetting.