Abstract:Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
Abstract:Large Language Models (LLMs) exhibit remarkably powerful capabilities. One of the crucial factors to achieve success is aligning the LLM's output with human preferences. This alignment process often requires only a small amount of data to efficiently enhance the LLM's performance. While effective, research in this area spans multiple domains, and the methods involved are relatively complex to understand. The relationships between different methods have been under-explored, limiting the development of the preference alignment. In light of this, we break down the existing popular alignment strategies into different components and provide a unified framework to study the current alignment strategies, thereby establishing connections among them. In this survey, we decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm. This unified view offers an in-depth understanding of existing alignment algorithms and also opens up possibilities to synergize the strengths of different strategies. Furthermore, we present detailed working examples of prevalent existing algorithms to facilitate a comprehensive understanding for the readers. Finally, based on our unified perspective, we explore the challenges and future research directions for aligning large language models with human preferences.
Abstract:Few-shot object counting aims to count the number of objects in a query image that belong to the same class as the given exemplar images. Existing methods compute the similarity between the query image and exemplars in the 2D spatial domain and perform regression to obtain the counting number. However, these methods overlook the rich information about the spatial distribution of similarity on the exemplar images, leading to significant impact on matching accuracy. To address this issue, we propose a network learning Spatial Similarity Distribution (SSD) for few-shot object counting, which preserves the spatial structure of exemplar features and calculates a 4D similarity pyramid point-to-point between the query features and exemplar features, capturing the complete distribution information for each point in the 4D similarity space. We propose a Similarity Learning Module (SLM) which applies the efficient center-pivot 4D convolutions on the similarity pyramid to map different similarity distributions to distinct predicted density values, thereby obtaining accurate count. Furthermore, we also introduce a Feature Cross Enhancement (FCE) module that enhances query and exemplar features mutually to improve the accuracy of feature matching. Our approach outperforms state-of-the-art methods on multiple datasets, including FSC-147 and CARPK. Code is available at https://github.com/CBalance/SSD.
Abstract:Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence. We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and conduct experiments to show its effect on different algorithms.
Abstract:Large Language Models (LLMs) rely on Human Preference Alignment (HPA) to ensure the generation of safe content. Due to the heavy cost associated with fine-tuning, fine-tuning-free methods have emerged, typically modifying LLM decoding with external auxiliary methods. However, these methods do not essentially enhance the LLM itself. In this paper, we rethink the derivation procedures of DPO, based on which we conversely build an instant scorer using the states of the LLM before and after In-context Learning (ICL). Accordingly, we propose a novel approach called In-Context Direct Preference Optimization (ICDPO). It enables LLMs to borrow the HPA capabilities from superior LLMs with ICL, generating well-aligned responses as estimated by the aforementioned instant scorer, thereby enhancing the final performance. ICDPO can be further enhanced with a two-stage retriever and an upgraded scorer, both offering benefits. Extensive experiments show its effectiveness, particularly in outperforming two fine-tuning-free baselines, and it exhibits competitiveness with SFT + LoRA. We also conduct detailed analyses to offer comprehensive insights into ICDPO.
Abstract:Reasoning is a cognitive process of using evidence to reach a sound conclusion. The reasoning capability is essential for large language models (LLMs) to serve as the brain of the artificial general intelligence agent. Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities. However, we find that the fine-tuned LLMs suffer from an \textit{Assessment Misalignment} problem, i.e., they frequently assign higher scores to subpar COTs, leading to potential limitations in their reasoning abilities. To address this problem, we introduce an \textit{Alignment Fine-Tuning (AFT)} paradigm, which involves three steps: 1) fine-tuning LLMs with COT training data; 2) generating multiple COT responses for each question, and categorizing them into positive and negative ones based on whether they achieve the correct answer; 3) calibrating the scores of positive and negative responses given by LLMs with a novel constraint alignment loss. Specifically, the constraint alignment loss has two objectives: a) Alignment, which guarantees that positive scores surpass negative scores to encourage answers with high-quality COTs; b) Constraint, which keeps the negative scores confined to a reasonable range to prevent the model degradation. Beyond just the binary positive and negative feedback, the constraint alignment loss can be seamlessly adapted to the ranking situations when ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based alignment methods, such as DPO, RRHF, and PRO, and discover that the constraint, which has been overlooked by these approaches, is also crucial for their performance. Extensive experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate the effectiveness of AFT.
Abstract:Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secur AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment by combining a reward model, typically based on Bradley-Terry paired comparison, with an RL algorithm such as Proximal Policy Optimization (PPO) to optimize LLM responses. However, RLHF exhibits complexity, instability, and sensitivity to hyperparameters. In this paper, we propose Preference Ranking Optimization (PRO) as an alternative to PPO for directly aligning LLMs with the Bradley-Terry comparison. PRO extends the pairwise Bradley-Terry comparison to accommodate preference rankings of any length. By iteratively contrasting the likelihood of generating responses, PRO instructs the LLM to prioritize the best response while progressively ranking the remaining responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of $n$ responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms existing alignment algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations. Furthermore, we demonstrate that longer, more diverse, and higher-quality preference ranking sequences can consistently enhance the performance of human alignment.
Abstract:Recent research has shown that Large Language Models (LLMs) can utilize external tools to improve their contextual processing abilities, moving away from the pure language modeling paradigm and paving the way for Artificial General Intelligence. Despite this, there has been a lack of systematic evaluation to demonstrate the efficacy of LLMs using tools to respond to human instructions. This paper presents API-Bank, the first benchmark tailored for Tool-Augmented LLMs. API-Bank includes 53 commonly used API tools, a complete Tool-Augmented LLM workflow, and 264 annotated dialogues that encompass a total of 568 API calls. These resources have been designed to thoroughly evaluate LLMs' ability to plan step-by-step API calls, retrieve relevant APIs, and correctly execute API calls to meet human needs. The experimental results show that GPT-3.5 emerges the ability to use the tools relative to GPT3, while GPT-4 has stronger planning performance. Nevertheless, there remains considerable scope for further improvement when compared to human performance. Additionally, detailed error analysis and case studies demonstrate the feasibility of Tool-Augmented LLMs for daily use, as well as the primary challenges that future research needs to address.
Abstract:Multi-intent Spoken Language Understanding has great potential for widespread implementation. Jointly modeling Intent Detection and Slot Filling in it provides a channel to exploit the correlation between intents and slots. However, current approaches are apt to formulate these two sub-tasks differently, which leads to two issues: 1) It hinders models from effective extraction of shared features. 2) Pretty complicated structures are involved to enhance expression ability while causing damage to the interpretability of frameworks. In this work, we describe a Prompt-based Spoken Language Understanding (PromptSLU) framework, to intuitively unify two sub-tasks into the same form by offering a common pre-trained Seq2Seq model. In detail, ID and SF are completed by concisely filling the utterance into task-specific prompt templates as input, and sharing output formats of key-value pairs sequence. Furthermore, variable intents are predicted first, then naturally embedded into prompts to guide slot-value pairs inference from a semantic perspective. Finally, we are inspired by prevalent multi-task learning to introduce an auxiliary sub-task, which helps to learn relationships among provided labels. Experiment results show that our framework outperforms several state-of-the-art baselines on two public datasets.
Abstract:Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.