Abstract:Affective Forecasting, a research direction in psychology that predicts individuals future emotions, is often constrained by numerous external factors like social influence and temporal distance. To address this, we transform Affective Forecasting into a Deep Learning problem by designing an Emotion Forecasting paradigm based on two-party interactions. We propose a novel Emotion Forecasting (EF) task grounded in the theory that an individuals emotions are easily influenced by the emotions or other information conveyed during interactions with another person. To tackle this task, we have developed a specialized dataset, Human-interaction-based Emotion Forecasting (Hi-EF), which contains 3069 two-party Multilayered-Contextual Interaction Samples (MCIS) with abundant affective-relevant labels and three modalities. Hi-EF not only demonstrates the feasibility of the EF task but also highlights its potential. Additionally, we propose a methodology that establishes a foundational and referential baseline model for the EF task and extensive experiments are provided. The dataset and code is available at https://github.com/Anonymize-Author/Hi-EF.
Abstract:In the field of affective computing, fully leveraging information from a variety of sensory modalities is essential for the comprehensive understanding and processing of human emotions. Inspired by the process through which the human brain handles emotions and the theory of cross-modal plasticity, we propose UMBEnet, a brain-like unified modal affective processing network. The primary design of UMBEnet includes a Dual-Stream (DS) structure that fuses inherent prompts with a Prompt Pool and a Sparse Feature Fusion (SFF) module. The design of the Prompt Pool is aimed at integrating information from different modalities, while inherent prompts are intended to enhance the system's predictive guidance capabilities and effectively manage knowledge related to emotion classification. Moreover, considering the sparsity of effective information across different modalities, the SSF module aims to make full use of all available sensory data through the sparse integration of modality fusion prompts and inherent prompts, maintaining high adaptability and sensitivity to complex emotional states. Extensive experiments on the largest benchmark datasets in the Dynamic Facial Expression Recognition (DFER) field, including DFEW, FERV39k, and MAFW, have proven that UMBEnet consistently outperforms the current state-of-the-art methods. Notably, in scenarios of Modality Missingness and multimodal contexts, UMBEnet significantly surpasses the leading current methods, demonstrating outstanding performance and adaptability in tasks that involve complex emotional understanding with rich multimodal information.
Abstract:The contemporary state-of-the-art of Dynamic Facial Expression Recognition (DFER) technology facilitates remarkable progress by deriving emotional mappings of facial expressions from video content, underpinned by training on voluminous datasets. Yet, the DFER datasets encompass a substantial volume of noise data. Noise arises from low-quality captures that defy logical labeling, and instances that suffer from mislabeling due to annotation bias, engendering two principal types of uncertainty: the uncertainty regarding data usability and the uncertainty concerning label reliability. Addressing the two types of uncertainty, we have meticulously crafted a two-stage framework aiming at \textbf{S}eeking \textbf{C}ertain data \textbf{I}n extensive \textbf{U}ncertain data (SCIU). This initiative aims to purge the DFER datasets of these uncertainties, thereby ensuring that only clean, verified data is employed in training processes. To mitigate the issue of low-quality samples, we introduce the Coarse-Grained Pruning (CGP) stage, which assesses sample weights and prunes those deemed unusable due to their low weight. For samples with incorrect annotations, the Fine-Grained Correction (FGC) stage evaluates prediction stability to rectify mislabeled data. Moreover, SCIU is conceived as a universally compatible, plug-and-play framework, tailored to integrate seamlessly with prevailing DFER methodologies. Rigorous experiments across prevalent DFER datasets and against numerous benchmark methods substantiates SCIU's capacity to markedly elevate performance metrics.
Abstract:The performance of CLIP in dynamic facial expression recognition (DFER) task doesn't yield exceptional results as observed in other CLIP-based classification tasks. While CLIP's primary objective is to achieve alignment between images and text in the feature space, DFER poses challenges due to the abstract nature of text and the dynamic nature of video, making label representation limited and perfect alignment difficult. To address this issue, we have designed A$^{3}$lign-DFER, which introduces a new DFER labeling paradigm to comprehensively achieve alignment, thus enhancing CLIP's suitability for the DFER task. Specifically, our A$^{3}$lign-DFER method is designed with multiple modules that work together to obtain the most suitable expanded-dimensional embeddings for classification and to achieve alignment in three key aspects: affective, dynamic, and bidirectional. We replace the input label text with a learnable Multi-Dimensional Alignment Token (MAT), enabling alignment of text to facial expression video samples in both affective and dynamic dimensions. After CLIP feature extraction, we introduce the Joint Dynamic Alignment Synchronizer (JAS), further facilitating synchronization and alignment in the temporal dimension. Additionally, we implement a Bidirectional Alignment Training Paradigm (BAP) to ensure gradual and steady training of parameters for both modalities. Our insightful and concise A$^{3}$lign-DFER method achieves state-of-the-art results on multiple DFER datasets, including DFEW, FERV39k, and MAFW. Extensive ablation experiments and visualization studies demonstrate the effectiveness of A$^{3}$lign-DFER. The code will be available in the future.
Abstract:Understanding the continuous states of objects is essential for task learning and planning in the real world. However, most existing task learning benchmarks assume discrete(e.g., binary) object goal states, which poses challenges for the learning of complex tasks and transferring learned policy from simulated environments to the real world. Furthermore, state discretization limits a robot's ability to follow human instructions based on the grounding of actions and states. To tackle these challenges, we present ARNOLD, a benchmark that evaluates language-grounded task learning with continuous states in realistic 3D scenes. ARNOLD is comprised of 8 language-conditioned tasks that involve understanding object states and learning policies for continuous goals. To promote language-instructed learning, we provide expert demonstrations with template-generated language descriptions. We assess task performance by utilizing the latest language-conditioned policy learning models. Our results indicate that current models for language-conditioned manipulations continue to experience significant challenges in novel goal-state generalizations, scene generalizations, and object generalizations. These findings highlight the need to develop new algorithms that address this gap and underscore the potential for further research in this area. See our project page at: https://arnold-benchmark.github.io
Abstract:Deep learning models tend to underperform in the presence of domain shifts. Domain transfer has recently emerged as a promising approach wherein images exhibiting a domain shift are transformed into other domains for augmentation or adaptation. However, with the absence of paired and annotated images, most domain transfer methods mainly rely on adversarial networks and weak cycle consistency, which could result in incomplete domain transfer or poor adherence to the original image content. In this paper, we introduce MDT-Net to address the limitations above through a multi-domain transfer model based on perceptual supervision. Specifically, our model consists of an encoder-decoder network, which aims to preserve anatomical structures, and multiple domain-specific transfer modules, which guide the domain transition through feature transformation. During the inference, MDT-Net can directly transfer images from the source domain to multiple target domains at one time without any reference image. To demonstrate the performance of MDT-Net, we evaluate it on RETOUCH dataset, comprising OCT scans from three different scanner devices (domains), for multi-domain transfer. We also take the transformed results as additional training images for fluid segmentation in OCT scans in the tasks of domain adaptation and data augmentation. Experimental results show that MDT-Net can outperform other domain transfer models qualitatively and quantitatively. Furthermore, the significant improvement in dice scores over multiple segmentation models also demonstrates the effectiveness and efficiency of our proposed method.
Abstract:We study the problem of predicting whether the price of the 21 most popular cryptocurrencies (according to coinmarketcap.com) will go up or down on day d, using data up to day d-1. Our C2P2 algorithm is the first algorithm to consider the fact that the price of a cryptocurrency c might depend not only on historical prices, sentiments, global stock indices, but also on the prices and predicted prices of other cryptocurrencies. C2P2 therefore does not predict cryptocurrency prices one coin at a time --- rather it uses similarity metrics in conjunction with collective classification to compare multiple cryptocurrency features to jointly predict the cryptocurrency prices for all 21 coins considered. We show that our C2P2 algorithm beats out a recent competing 2017 paper by margins varying from 5.1-83% and another Bitcoin-specific prediction paper from 2018 by 16%. In both cases, C2P2 is the winner on all cryptocurrencies considered. Moreover, we experimentally show that the use of similarity metrics within our C2P2 algorithm leads to a direct improvement for 20 out of 21 cryptocurrencies ranging from 0.4% to 17.8%. Without the similarity component, C2P2 still beats competitors on 20 out of 21 cryptocurrencies considered. We show that all these results are statistically significant via a Student's t-test with p<1e-5. Check our demo at https://www.cs.dartmouth.edu/dsail/demos/c2p2
Abstract:Recent advances in blockchain technologies have provided exciting opportunities for decentralized applications. Specifically, blockchain-based smart contracts enable credible transactions without authorized third parties. The attractive properties of smart contracts facilitate distributed data vending, allowing for proprietary data to be securely exchanged on a blockchain. Distributed data vending can transform domains such as healthcare by encouraging data distribution from owners and enabling large-scale data aggregation. However, one key challenge in distributed data vending is the trade-off dilemma between the effectiveness of data retrieval, and the leakage risk from indexing the data. In this paper, we propose a framework for distributed data vending through a combination of data embedding and similarity learning. We illustrate our framework through a practical scenario of distributing and aggregating electronic medical records on a blockchain. Extensive empirical results demonstrate the effectiveness of our framework.
Abstract:Group sparsity has shown great potential in various low-level vision tasks (e.g, image denoising, deblurring and inpainting). In this paper, we propose a new prior model for image denoising via group sparsity residual constraint (GSRC). To enhance the performance of group sparse-based image denoising, the concept of group sparsity residual is proposed, and thus, the problem of image denoising is translated into one that reduces the group sparsity residual. To reduce the residual, we first obtain some good estimation of the group sparse coefficients of the original image by the first-pass estimation of noisy image, and then centralize the group sparse coefficients of noisy image to the estimation. Experimental results have demonstrated that the proposed method not only outperforms many state-of-the-art denoising methods such as BM3D and WNNM, but results in a faster speed.