Abstract:The works of Gatys et al. demonstrated the capability of Convolutional Neural Networks (CNNs) in creating artistic style images. This process of transferring content images in different styles is called Neural Style Transfer (NST). In this paper, we re-implement image-based NST, fast NST, and arbitrary NST. We also explore to utilize ResNet with activation smoothing in NST. Extensive experimental results demonstrate that smoothing transformation can greatly improve the quality of stylization results.
Abstract:Machine unlearning--enabling a trained model to forget specific data--is crucial for addressing biased data and adhering to privacy regulations like the General Data Protection Regulation (GDPR)'s "right to be forgotten". Recent works have paid little attention to privacy concerns, leaving the data intended for forgetting vulnerable to membership inference attacks. Moreover, they often come with high computational overhead. In this work, we propose Pseudo-Probability Unlearning (PPU), a novel method that enables models to forget data efficiently and in a privacy-preserving manner. Our method replaces the final-layer output probabilities of the neural network with pseudo-probabilities for the data to be forgotten. These pseudo-probabilities follow either a uniform distribution or align with the model's overall distribution, enhancing privacy and reducing risk of membership inference attacks. Our optimization strategy further refines the predictive probability distributions and updates the model's weights accordingly, ensuring effective forgetting with minimal impact on the model's overall performance. Through comprehensive experiments on multiple benchmarks, our method achieves over 20% improvements in forgetting error compared to the state-of-the-art. Additionally, our method enhances privacy by preventing the forgotten set from being inferred to around random guesses.
Abstract:With the explosive growth of Internet data, users are facing the problem of information overload, which makes it a challenge to efficiently obtain the required resources. Recommendation systems have emerged in this context. By filtering massive amounts of information, they provide users with content that meets their needs, playing a key role in scenarios such as advertising recommendation and product recommendation. However, traditional click-through rate prediction and TOP-K recommendation mechanisms are gradually unable to meet the recommendations needs in modern life scenarios due to high computational complexity, large memory consumption, long feature selection time, and insufficient feature interaction. This paper proposes a recommendations system model based on a separation embedding cross-network. The model uses an embedding neural network layer to transform sparse feature vectors into dense embedding vectors, and can independently perform feature cross operations on different dimensions, thereby improving the accuracy and depth of feature mining. Experimental results show that the model shows stronger adaptability and higher prediction accuracy in processing complex data sets, effectively solving the problems existing in existing models.
Abstract:Osteochondrodysplasia, affecting 2-3% of newborns globally, is a group of bone and cartilage disorders that often result in head malformations, contributing to childhood morbidity and reduced quality of life. Current research on this disease using mouse models faces challenges since it involves accurately segmenting the developing cartilage in 3D micro-CT images of embryonic mice. Tackling this segmentation task with deep learning (DL) methods is laborious due to the big burden of manual image annotation, expensive due to the high acquisition costs of 3D micro-CT images, and difficult due to embryonic cartilage's complex and rapidly changing shapes. While DL approaches have been proposed to automate cartilage segmentation, most such models have limited accuracy and generalizability, especially across data from different embryonic age groups. To address these limitations, we propose novel DL methods that can be adopted by any DL architectures -- including CNNs, Transformers, or hybrid models -- which effectively leverage age and spatial information to enhance model performance. Specifically, we propose two new mechanisms, one conditioned on discrete age categories and the other on continuous image crop locations, to enable an accurate representation of cartilage shape changes across ages and local shape details throughout the cranial region. Extensive experiments on multi-age cartilage segmentation datasets show significant and consistent performance improvements when integrating our conditional modules into popular DL segmentation architectures. On average, we achieve a 1.7% Dice score increase with minimal computational overhead and a 7.5% improvement on unseen data. These results highlight the potential of our approach for developing robust, universal models capable of handling diverse datasets with limited annotated data, a key challenge in DL-based medical image analysis.
Abstract:The ripple effect poses a significant challenge in knowledge editing for large language models. Namely, when a single fact is edited, the model struggles to accurately update the related facts in a sequence, which is evaluated by multi-hop questions linked to a chain of related facts. Recent strategies have moved away from traditional parameter updates to more flexible, less computation-intensive methods, proven to be more effective in addressing the ripple effect. In-context learning (ICL) editing uses a simple demonstration `Imagine that + new fact` to guide LLMs, but struggles with complex multi-hop questions as the new fact alone fails to specify the chain of facts involved in such scenarios. Besides, memory-based editing maintains additional storage for all edits and related facts, requiring continuous updates to stay effective. As a result of these design limitations, the challenge remains, with the highest accuracy being only 33.8% on the MQuAKE-cf benchmarks for Vicuna-7B. To address this, we propose RippleCOT, a novel ICL editing approach integrating Chain-of-Thought (COT) reasoning. RippleCOT structures demonstrations as `newfact, question, thought, answer`, incorporating a thought component to identify and decompose the multi-hop logic within questions. This approach effectively guides the model through complex multi-hop questions with chains of related facts. Comprehensive experiments demonstrate that RippleCOT significantly outperforms the state-of-the-art on the ripple effect, achieving accuracy gains ranging from 7.8% to 87.1%.
Abstract:Automatic and accurate segmentation of brain MR images throughout the human lifespan into tissue and structure is crucial for understanding brain development and diagnosing diseases. However, challenges arise from the intricate variations in brain appearance due to rapid early brain development, aging, and disorders, compounded by the limited availability of manually-labeled datasets. In response, we present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI. Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels, followed by the incorporation of knowledge-driven embeddings learned from image-text alignment into the models. The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes, enabling models to learn structural feature embeddings across diverse age groups. Experimental findings demonstrate the superiority and robustness of our proposed method, particularly noticeable when employing Swin UNETR as the backbone. Our approach achieves average DSC values of 95.17% and 94.19% for brain tissue and structure segmentation, respectively. Our code is available at https://github.com/TL9792/KGPL.
Abstract:Large pre-trained models, such as large language models (LLMs), present significant resource challenges for fine-tuning due to their extensive parameter sizes, especially for applications in mobile systems. To address this, Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results. Despite its effectiveness, the original LoRA method faces challenges of suboptimal performance and overfitting. This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension. By employing regularization and a gradient masking method that encourages higher intrinsic dimension, the proposed method, termed Regularized and Masked LoRA (RM-LoRA), achieves superior generalization performance with the same or lower trainable parameter budget compared to the original LoRA and its latest variants across various open-source vision and language datasets.
Abstract:Accurate detection of vulvovaginal candidiasis is critical for women's health, yet its sparse distribution and visually ambiguous characteristics pose significant challenges for accurate identification by pathologists and neural networks alike. Our eye-tracking data reveals that areas garnering sustained attention - yet not marked by experts after deliberation - are often aligned with false positives of neural networks. Leveraging this finding, we introduce Gaze-DETR, a pioneering method that integrates gaze data to enhance neural network precision by diminishing false positives. Gaze-DETR incorporates a universal gaze-guided warm-up protocol applicable across various detection methods and a gaze-guided rectification strategy specifically designed for DETR-based models. Our comprehensive tests confirm that Gaze-DETR surpasses existing leading methods, showcasing remarkable improvements in detection accuracy and generalizability.
Abstract:Medication recommendation systems have gained significant attention in healthcare as a means of providing tailored and effective drug combinations based on patients' clinical information. However, existing approaches often suffer from fairness issues, as recommendations tend to be more accurate for patients with common diseases compared to those with rare conditions. In this paper, we propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed), which leverages the pretrain-finetune learning paradigm to enhance accuracy for rare diseases. RAREMed employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes. Additionally, it introduces two self-supervised pre-training tasks, namely Sequence Matching Prediction (SMP) and Self Reconstruction (SR), to learn specialized medication needs and interrelations among clinical codes. Experimental results on two real-world datasets demonstrate that RAREMed provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
Abstract:Online recommenders have attained growing interest and created great revenue for businesses. Given numerous users and items, incremental update becomes a mainstream paradigm for learning large-scale models in industrial scenarios, where only newly arrived data within a sliding window is fed into the model, meeting the strict requirements of quick response. However, this strategy would be prone to overfitting to newly arrived data. When there exists a significant drift of data distribution, the long-term information would be discarded, which harms the recommendation performance. Conventional methods address this issue through native model-based continual learning methods, without analyzing the data characteristics for online recommenders. To address the aforementioned issue, we propose an incremental update framework for online recommenders with Data-Driven Prior (DDP), which is composed of Feature Prior (FP) and Model Prior (MP). The FP performs the click estimation for each specific value to enhance the stability of the training process. The MP incorporates previous model output into the current update while strictly following the Bayes rules, resulting in a theoretically provable prior for the robust update. In this way, both the FP and MP are well integrated into the unified framework, which is model-agnostic and can accommodate various advanced interaction models. Extensive experiments on two publicly available datasets as well as an industrial dataset demonstrate the superior performance of the proposed framework.